留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空发动机涡轮叶片DR检测工艺参数优化

俞梦倩 吴伟 邬冠华 夏志风 傅伟成

俞梦倩, 吴伟, 邬冠华, 等. 航空发动机涡轮叶片DR检测工艺参数优化[J]. 航空动力学报, 2023, 38(8):1837-1845 doi: 10.13224/j.cnki.jasp.20210731
引用本文: 俞梦倩, 吴伟, 邬冠华, 等. 航空发动机涡轮叶片DR检测工艺参数优化[J]. 航空动力学报, 2023, 38(8):1837-1845 doi: 10.13224/j.cnki.jasp.20210731
YU Mengqian, WU Wei, WU Guanhua, et al. Optimization of DR detection process parameters for aero-engine turbine blades[J]. Journal of Aerospace Power, 2023, 38(8):1837-1845 doi: 10.13224/j.cnki.jasp.20210731
Citation: YU Mengqian, WU Wei, WU Guanhua, et al. Optimization of DR detection process parameters for aero-engine turbine blades[J]. Journal of Aerospace Power, 2023, 38(8):1837-1845 doi: 10.13224/j.cnki.jasp.20210731

航空发动机涡轮叶片DR检测工艺参数优化

doi: 10.13224/j.cnki.jasp.20210731
基金项目: 国家自然科学基金(62161030)
详细信息
    作者简介:

    俞梦倩(1997-),女,硕士, 研究方向为智能图像处理。E-mail:10362109935@qq.com

    通讯作者:

    吴伟(1970-),男,教授、硕士生导师,硕士,研究方向为智能测试技术与射线检测、图像检测与智能识别等。E-mail:cwuwei@163.com

  • 中图分类号: V232.4

Optimization of DR detection process parameters for aero-engine turbine blades

  • 摘要:

    针对工业领域数字射线(DR)快速选定检测工艺参数获取高信噪比图像的需求,研究DR检测中多因素工艺参数不同组合对成像结果的影响。以航空发动机涡轮叶片同材料等效厚度试块为对象,采用二次回归正交旋转实验方法,建立检测图像信噪比与管电压、管电流、积分时间、不同等效厚度之间的二次回归方程模型,并检验单因素及各因素间交互作用对检测图像信噪比的显著性。利用人工刻槽航空发动机涡轮叶片结合回归方程模型,以检测图像信噪比为优化指标,在已知透照厚度情况下得到最佳工艺参数组合,比较检测图像信噪比的实际值与计算值。结果表明:在4组验证实验下实际信噪比值与计算值比较接近,误差范围在1.4%~5.5%,表明模型具有较高的可靠性。

     

  • 图 1  DR透照布置实物图

    Figure 1.  Physical map of DR transillumination layout

    图 2  实验试块设计及实物图

    Figure 2.  Test block design and physical diagram

    图 3  各阶梯DR检测图像

    Figure 3.  DR detection images of each step

    图 4  航空发动机涡轮叶片刻槽示意图

    Figure 4.  Schematic diagram of notching grooves in aero-engine turbine blades

    图 5  回归模型实际工件验证

    Figure 5.  Regression model actual workpiece verification

    图 6  航空发动机涡轮叶片DR图像

    Figure 6.  DR image of aero-engine turbine blades

    表  1  DR系统技术指标

    Table  1.   Technical indicators of DR system

    技术指标参数及说明
    像素尺寸3524×4288
    像素点间距/μm100
    AD位数/bit16
    探测器质量/kg3.2
    闪烁体材料主要为Csl(Tl)
    探测器材料非晶硅
    探测器工作温度/℃10~35
    探测器工作湿度/%10~90
    射线源焦点大小/μm5
    最大管电压/kV225
    最大管电流/μA3000
    下载: 导出CSV

    表  2  工件各阶梯制作规格

    Table  2.   Production specifications of each step of the workpiece

    参数阶梯规格
    阶梯1阶梯2阶梯3阶梯4阶梯5
    等效厚度/mm2581114
    丝径/mm0.080.1250.20.250.25
    下载: 导出CSV

    表  3  各阶梯预实验选择参数

    Table  3.   Selection parameters at each step of pre test

    各阶梯预实验管电压/kV管电流/μA积分时间/ms阶梯厚度/mm灰度均值G
    第1块1205001000231125
    第2块130800200530076
    第3块14014002000829854
    第4块150170025001133689
    第5块160170030001430689
    下载: 导出CSV

    表  4  DR参数水平编码表

    Table  4.   DR parameter level coding table

    自然变量${{\textit{z}}_j}$上星号臂水平$\gamma (2)$上水平1零水平0下水平-1下星号臂水平$-\gamma ( -2)$变化间距${\varDelta _j}$
    ${x_1}$/kV16015014013012010
    ${x_2}$/μA170014001100800500300
    ${x_3}$/ms30002500200015001000500
    ${x_4}$/mm14118523
    下载: 导出CSV

    表  5  二次回归正交旋转实验设计表

    Table  5.   Design table of quadratic regression orthogonal rotation test

    实验号$v$$i$$t$$h$$vi$$vt$$vh$$it$$ih$$th$${v^2}$${i^2}$${t^2}$${h^2}$$R$
    ${{\textit{z}}_1}$${{\textit{z}}_2}$${{\textit{z}}_3}$${{\textit{z}}_4}$${{\textit{z}}_1}{{\textit{z}}_2}$${{\textit{z}}_1}{{\textit{z}}_3}$${{\textit{z}}_1}{{\textit{z}}_4}$${{\textit{z}}_2}{{\textit{z}}_3}$${{\textit{z}}_2}{{\textit{z}}_4}$${{\textit{z}}_3}{{\textit{z}}_4}$${\textit{z}}'_1$${\textit{z}}'_2$${\textit{z}}'_3$${\textit{z}}'_4$y
    111111111110.3330.3330.3330.33332.10
    2111−111−11−1−10.3330.3330.3330.33335.30
    311−111−11−11−10.3330.3330.3330.33327.40
    4111−11−1−1−1−110.3330.3330.3330.33335.30
    51−111−111−1−110.3330.3330.3330.33327.29
    61−11−1−11−1−11−10.3330.3330.3330.33330.20
    71−1−11−1−111−1−10.3330.3330.3330.33325.71
    81−1−1−1−1−1−11110.3330.3330.3330.33328.60
    9−1111−1−1−11110.3330.3330.3330.33327.70
    10−111−1−1−111−1−10.3330.3330.3330.33330.57
    11−11−11−11−1−11−10.3330.3330.3330.33323.28
    12−11−1−1−111−1−110.3330.3330.3330.33326.14
    13−1−1111−1−1−1−110.3330.3330.3330.33324.54
    14−1−11−11−11−11−10.3330.3330.3330.33327.50
    15−1−1−1111−11−1−10.3330.3330.3330.33323.60
    16−1−1−1−11111110.3330.3330.3330.33326.04
    1720000000003.333−0.667−0.667−0.66732.02
    18−20000000003.333−0.667−0.667−0.66724.86
    190200000000−0.6673.333−0.667−0.66730.60
    200−200000000−0.6673.333−0.667−0.66725.40
    210020000000−0.667−0.6673.333−0.66729.30
    2200−20000000−0.667−0.6673.333−0.66723.40
    230002000000−0.667−0.667−0.6673.33325.40
    24000−2000000−0.667−0.667−0.6673.33331.70
    250000000000−0.667−0.667−0.667−0.66733.82
    260000000000−0.667−0.667−0.667−0.66733.78
    270000000000−0.667−0.667−0.667−0.66733.74
    280000000000−0.667−0.667−0.667−0.66733.65
    290000000000−0.667−0.667−0.667−0.66733.69
    300000000000−0.667−0.667−0.667−0.66733.60
    310000000000−0.667−0.667−0.667−0.66733.50
    320000000000−0.667−0.667−0.667−0.66733.57
    330000000000−0.667−0.667−0.667−0.66733.59
    340000000000−0.667−0.667−0.667−0.66733.57
    350000000000−0.667−0.667−0.667−0.66733.75
    360000000000−0.667−0.667−0.667−0.66733.59
    下载: 导出CSV

    表  6  以信噪比为评价指标的回归模型方差分析

    Table  6.   Variance analysis of regression model with signal-to-noise ratio as the evaluation index

    变异来源平方和自由度均方FP
    ${{\textit{z}}_1}$73.780173.7804904.9297.15×10−18**
    ${{\textit{z}}_2}$37.350137.3502483.0465.87×10−16**
    ${{\textit{z}}_3}$53.103153.1033530.3506.02×10−17**
    ${{\textit{z}}_4}$53.580153.5803562.0655.68e×10−17**
    ${{\textit{z}}_1}{{\textit{z}}_2}$3.53413.534234.9671.92×10−9**
    ${{\textit{z}}_1}{{\textit{z}}_3}$0.12210.1228.1430.018*
    ${{\textit{z}}_1}{{\textit{z}}_4}$0.06210.0624.1550.074
    ${{\textit{z}}_2}{{\textit{z}}_3}$10.144110.144674.3902.56×10−12**
    ${{\textit{z}}_2}{{\textit{z}}_4}$0.04610.0463.0730.118
    ${{\textit{z}}_3}{{\textit{z}}_4}$0.024510.0241.5970.250
    ${\textit{z}}'_1$42.773142.7733549.3062.44×10−16**
    ${\textit{z}}'_2$50.112150.1124179.5748.76×10−17**
    ${\textit{z}}'_3$82.807182.8077001.5943.38×10−18**
    ${\textit{z}}'_4$41.029141.0293399.7833.19×10−16**
    模型504.471436.032395.501.44×10−18**
    剩余0.3159210.0150
    失拟0.2056100.02062.050.1273
    误差0.1103110.0100
    总和504.7835
    注:*表示$P < 0.05$,影响显著;**表示$P < 0.01$,影响极显著。
    下载: 导出CSV

    表  7  航空发动机涡轮叶片刻槽设计尺寸

    Table  7.   Designed dimensions of grooves in aero-engine turbine blades

    参数编号
    12345678
    公称尺寸/mm10×0.2×110×0.2×15×0.2×110×0.2×14×0.2×14×0.2×14×0.2×14×0.2×1
    等效厚度/mm10.5131310.53.53.52.52.5
    下载: 导出CSV

    表  8  验证实验参数计算结果

    Table  8.   Verification of test parameter calculation results

    实验参数水平1、4号线槽2、3号线槽5、6号线槽7、8号线槽
    厚度换算水平0.8331.667−1.5−1.833
    管电压水平约束范围0~11~2−2~−1−2~−1.5
    管电流水平约束范围0~11~2−2~−1−2~−1.5
    积分时间水平约束范围0~11~2−2~−1−2~−1.5
    最优管电压水平,实际值/kV0.783, 1481, 150−1, 130−1.5, 125
    最优管电流水平,实际值/μA0.702, 13111, 1400−1, 800−1.5, 650
    最优积分时间水平,实际值/ms0.563, 22821, 2500−1, 1500−1.5, 1250
    下载: 导出CSV
  • [1] CHEN L,LI B,ZHOU H,et al. Detection of three-dimensional parameter of defects for gas turbine blades based on two-dimensional digital radiographic projective imaging[J]. Journal of Nondestructive Evaluation,2019,38(4): 101-110. doi: 10.1007/s10921-019-0640-3
    [2] KUSK M W,JENSEN J M,GRAM E H,et al. Anode heel effect: does it impact image quality in digital radiography? a systematic literature review[J]. Radiography,2021,27(3): 976-981.
    [3] 王琦,高党忠,马小军,等. 惯性约束聚变靶丸高精度X射线数字成像[J]. 光学精密工程,2020,28(2): 69-78.

    WANG Qi,GAO Dangzhong,MA Xiaojun,et al. High precision X-ray digital imaging of inertial confinement fusion target[J]. Optics and Precision Engineering,2020,28(2): 69-78. (in Chinese)
    [4] 张军辉, 赖传理, 陈小明. X射线数字成像检测(DR)系统曝光曲线制作讨论[R]. 西安: 2017远东无损检测新技术论坛, 2017.
    [5] 郭文明,陈宇亮. X射线图像灰度值与透照厚度的定量关系[J]. 无损检测,2016,38(2): 14-17. doi: 10.11973/wsjc201602004

    GUO Wenming,CHENG Yuliang. Quantitative relationship between X-ray image gray value and transillumination thickness[J]. Nondestructive Testing,2016,38(2): 14-17. (in Chinese) doi: 10.11973/wsjc201602004
    [6] 胡景东, 梁丽红, 刘雪梅, 等. 射线数字成像透照厚度与灰度模型研究[J]. 光学学报, 2021, 41(10): 222-227.

    HU Jingdong, LIANG Lihong, LIU Xuemei, et al. Study on transmission thickness and gray model of X-ray digital imaging[J]. Acta Optica Sinica, 2021, 41(10): 222-227. (in Chinese)
    [7] 胡文刚, 陆云鹏, 郭世雄, 等. 基于DR数字射线成像技术的铝合金焊缝缺陷检测[J]. 焊接, 2021(2): 46-51, 64.

    HU Wengang, LU Yunpeng, GUO Shixiong, et al. Defect detection of aluminum alloy weld based on DR digital radiographic technology[J]. Weldingand Joining,2021(2): 46-51, 64. (in Chinese)
    [8] 张佳祥. 钢制管道缺陷X射线数字成像检测技术研究[D]. 杭州: 浙江工业大学, 2017.

    ZHANG Jiaxiang, Research on X-ray digital imaging detection technology of steel pipeline defects[D]. Hangzhou: Zhejiang University of Technology, 2017. (in Chinese)
    [9] 倪培君,王俊涛,闫敏,等. 数字射线检测技术理论研究进展[J]. 机械工程学报,2017,53(12): 13-18. doi: 10.3901/JME.2017.12.013

    NI Peijun,WANG Juntao,YAN Min,et al. Theoretical research progress of digital radiographic testing technology[J]. Journal of Mechanical Engineering,2017,53(12): 13-18. (in Chinese) doi: 10.3901/JME.2017.12.013
    [10] 郭增,李彦红. 基于回归正交试验的赤泥基固化剂改良粉质粘土水稳定性研究[J]. 数学的实践与认识,2019,49(5): 315-320.

    GUO Zeng,LI Yanhong. Study on the stability of silty clay water stabilized by red mud base curing agen based on regression orthogonal test[J]. Mathematics in Practice and Theory,2019,49(5): 315-320. (in Chinese)
    [11] 魏慧荣,李晓东. 搅拌机颗粒导热系数的测定[J]. 兵器装备工程学报,2019,40(2): 179-183. doi: 10.11809/bqzbgcxb2019.02.036

    WEI Huirong,LI Xiaodong. Determination of thermal conductivity of mixer particles[J]. Journal of Ordnance Equipment Engineering,2019,40(2): 179-183. (in Chinese) doi: 10.11809/bqzbgcxb2019.02.036
    [12] 孙明社,郭小红,王梦恕,等. 基于二次正交试验的隧道非概率可靠度方法研究[J]. 土木工程学报,2017,50(增刊2): 105-111.

    SUN Mingshe,GUO Xiaohong,WANG Mengshu,et al. Study on non probabilistic reliability method of tunnel based on quadratic orthogonal test[J]. China Civil Engineering Journal,2017,50(Suppl.2): 105-111. (in Chinese)
    [13] 葛宜元. 试验设计方法与Design-Expert软件应用[M]. 哈尔滨: 哈尔滨工业大学出版社, 2015.
    [14] 郭芳,原霞,吉梦雯,等. 基于二次回归正交试验的连杆衬套成形质量分析[J]. 塑性工程学报,2018,25(5): 159-163.

    GUO Fang,YUAN Xia,JI Mengwen,et al. Forming quality analysis of connecting rod bushing based on quadratic regression orth-ogonal test[J]. Journal of Plasticity Engineering,2018,25(5): 159-163. (in Chinese)
    [15] 刘艳,尤齐燊,朱红梅,等. 电极感应气雾化法制备新型高硬度马氏体铁基合金粉末[J]. 粉末冶金技术,2021,39(6): 537-544.

    LIU Yan,YOU Qishen,ZHU Hongmei,et al. Preparation of new high hardness martensite iron-based alloy powder by electrode induction gas atomization[J]. Powder Metallurgy Technology,2021,39(6): 537-544. (in Chinese)
    [16] 马同玲,张扬军,王正,等. 基于正交试验的柔性联轴器设计灵敏度分析与优化研究[J]. 推进技术,2022,43(2): 237-245.

    MA Tonglin,ZHANG Yangjun,WANG Zheng,et al. Sensitivity analysis and optimization of flexible coupling design based on orthogonal test[J]. Journal of Propulsion Technology,2022,43(2): 237-245. (in Chinese)
    [17] MA X,RAO Q H. Property optimization of inorganic silicon aluminum polymer based on quadratic regression and orthogonal design[J]. Key Engineering Materials,2015,629/630: 510-517.
    [18] 刘凯,王晓勇,袁孟春. 碳纤维缠绕发动机壳体数字射线DR成像检测图像质量控制[J]. 宇航材料工艺,2020,50(5): 76-82.

    LIU Kai,WANG Xiaoyong,YUAN Mengchun. Image quality control of digital ray DR imaging detection of carbon fiber wound engine shell[J]. Aerospace Materials and Technology,2020,50(5): 76-82. (in Chinese)
  • 加载中
图(6) / 表(8)
计量
  • 文章访问数:  158
  • HTML浏览量:  38
  • PDF量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-27
  • 网络出版日期:  2022-12-22

目录

    /

    返回文章
    返回