留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热力耦合作用下固定结合面的微动磨损特性

李玲 李港华 林红 王晶晶 张锦华 蔡安江

李玲, 李港华, 林红, 等. 热力耦合作用下固定结合面的微动磨损特性[J]. 航空动力学报, 2023, 38(8):1805-1813 doi: 10.13224/j.cnki.jasp.20210737
引用本文: 李玲, 李港华, 林红, 等. 热力耦合作用下固定结合面的微动磨损特性[J]. 航空动力学报, 2023, 38(8):1805-1813 doi: 10.13224/j.cnki.jasp.20210737
LI Ling, LI Ganghua, LIN Hong, et al. Fretting wear characteristics of fixed joint surface under thermal and mechanical coupling[J]. Journal of Aerospace Power, 2023, 38(8):1805-1813 doi: 10.13224/j.cnki.jasp.20210737
Citation: LI Ling, LI Ganghua, LIN Hong, et al. Fretting wear characteristics of fixed joint surface under thermal and mechanical coupling[J]. Journal of Aerospace Power, 2023, 38(8):1805-1813 doi: 10.13224/j.cnki.jasp.20210737

热力耦合作用下固定结合面的微动磨损特性

doi: 10.13224/j.cnki.jasp.20210737
基金项目: 国家自然科学基金(51975449); 陕西省重点研发计划项目(2021GY-309)
详细信息
    作者简介:

    李玲(1981-),男,教授、博士生导师,博士,主要从事接触力学和摩擦学研究

    通讯作者:

    林红(1975-),女,讲师,博士,研究方向为数字化设计与制造。E-mail:lh759@163.com

  • 中图分类号: V231.9;TH117

Fretting wear characteristics of fixed joint surface under thermal and mechanical coupling

  • 摘要:

    为提高微动磨损预测的准确性,考虑实际工况中温升的影响,通过引入随温度变化的磨损系数来修正能量耗散磨损模型并编写UMESHMOTION子程序,基于柱面/平面微动试验建立微动磨损的温度-位移耦合有限元模型。模型考虑了温度、应力和磨损之间的相互作用以及温度对摩擦因数的影响,通过与Archard模型进行对比来验证模型的正确性,探究材料塑性、温度和微动循环次数对接触表面磨损和温升的影响。仿真试验表明:修正的能量耗散磨损模型的磨损深度略小于Archard模型的磨损深度,且随着温度的升高两种模型之间的差距增大;不考虑材料塑性和温度的磨损深度偏小,考虑材料塑性的磨损轮廓不再是光滑的赫兹形状;随着循环次数的增加,接触表面的温度升高,温升峰值水平位置随着圆柱试件移动,磨损深度的增长速率由于温度的升高而变小,磨损轮廓突变点与磨损中心的深度差越来越小。

     

  • 图 1  能量磨损系数拟合情况

    Figure 1.  Fitting situation of energy wear factor

    图 2  数值模拟流程简图

    Figure 2.  Flow chart of numerical simulation

    图 3  圆柱-平面接触有限元模型

    Figure 3.  Finite element model of cylinder-flat contact

    图 4  有限元模型的验证

    Figure 4.  Validation of the finite element model

    图 5  材料塑性特性对接触压力和磨损深度的影响

    Figure 5.  Effect of material plastic properties on contact pressure and wear depth

    图 6  考虑塑性时的温度分布

    Figure 6.  Temperature distribution when considering plasticity

    图 7  温度特性对接触压力和磨损深度的影响

    Figure 7.  Effect of temperature on contact pressure and wear depth

    图 8  接触压力、磨损深度和温度随循环次数的变化规律

    Figure 8.  Change law of contact pressure, wear depth and temperature with the number of cycles

    表  1  Ti-6Al-4V材料参数[28]

    Table  1.   Material parameters for Ti-6Al-4V[28]

    E0/
    MPa
    Es/
    (MPa/℃)
    σy0/
    MPa
    σys/
    (MPa/℃)
    νt0/℃
    114582−97.6927.3−0.9080.3425
    下载: 导出CSV

    表  2  Ti-6Al-4V随温度变化的物理性质[29]

    Table  2.   Temperature-dependent physical properties of Ti-6Al-4V[29]

    温度/℃热导率/
    (W/(m∙℃))
    比热容/
    (J/(kg∙℃))
    密度/
    (kg/m3
    2575464420
    1007.455624406
    2008.755844395
    30010.156064381
    下载: 导出CSV
  • [1] 杨利花,王振发,谢坤. 考虑离心力与热应力非连续界面的微动磨损[J]. 航空动力学报,2020,35(3): 552-559. doi: 10.13224/j.cnki.jasp.2020.03.011

    YANG Lihua,WANG Zhenfa,XIE Kun. Fretting wear of discontinuous interface considering centrifugal force and thermal stress[J]. Journal of Aerospace Power,2020,35(3): 552-559. (in Chinese) doi: 10.13224/j.cnki.jasp.2020.03.011
    [2] WATERHOUSE R. Fretting wear[J]. Wear,1984,100(1/2/3): 107-118.
    [3] PINTO A L,ARAÚJO J A,TALEMI R. Effects of fretting wear process on fatigue crack propagation and life assessment[J]. Tribology International,2021,156: 106787.1-106787.15.
    [4] JIN X,SHIPWAY P H,SUN W. The role of frictional power dissipation (as a function of frequency) and test temperature on contact temperature and the subsequent wear behaviour in a stainless steel contact in fretting[J]. Wear,2015,330/331: 103-111. doi: 10.1016/j.wear.2015.02.022
    [5] JIN X,SUN W,SHIPWAY P H. The role of geometry changes and debris formation associated with wear on the temperature field in fretting contacts[J]. Tribology International,2016,102: 392-406. doi: 10.1016/j.triboint.2016.05.043
    [6] 牛宇生,郝秀清,孙鹏程,等. 温度对表面摩擦磨损性能影响的研究进展[J]. 中国表面工程,2020,33(6): 1-22. doi: 10.11933/j.issn.1007-9289.20201014001

    NIU Yusheng,HAO Xiuqing,SUN Pengcheng,et al. Perspective of influence of temperature on friction and wear behavior[J]. China Surface Engineering,2020,33(6): 1-22. (in Chinese) doi: 10.11933/j.issn.1007-9289.20201014001
    [7] ARCHARD J F. Contact and rubbing of flat surfaces[J]. Journal of Applied Physics,1953,24(8): 981-988. doi: 10.1063/1.1721448
    [8] FOUVRY S,KAPSA P,VINCENT L. Quantification of fretting damage[J]. Wear,1996,200(1/2): 186-205.
    [9] MCCOLL I R,DING J,LEEN S B. Finite element simulation and experimental validation of fretting wear[J]. Wear,2004,256(11): 1114-1127.
    [10] 尹家宝,卢纯,全鑫,等. 列车制动块磨损行为动态演变数值分析[J]. 机械工程学报,2021,57(18): 1-22.

    YIN Jiabao,LU Chun,QUAN Xin,et al. Analysis of wear behavior dynamic evolution on railway brake pad[J]. Journal of Mechanical Engineering,2021,57(18): 1-22. (in Chinese)
    [11] AHMADI A,SADEGHI F. A novel three-dimensional finite element model to simulate third body effects on fretting wear of hertzian point contact in partial slip[J]. Journal of Tribology,2021,143(4): 041502.1-041502.14.
    [12] GONG W,CHEN Y,LI M,et al. Coupling fractal model for adhesive and three-body abrasive wear of AISI 1045 carbon steel spool valves[J]. Wear,2019,418/419: 75-85. doi: 10.1016/j.wear.2018.10.019
    [13] WANG Y, LIANG G, LIU S, et al. Coupling fractal model for fretting wear on rough contact surfaces[J]. Journal of Tribology, 2020, 143(9): 091701.1-091701.13.
    [14] 肖立,徐颖强,陈智勇,等. 直升机浮动渐开线花键微动磨损影响因素分析[J]. 航空动力学报,2021,36(4): 751-766. doi: 10.13224/j.cnki.jasp.2021.04.008

    XIAO Li,XU Yingqiang,CHEN Zhiyong,et al. Analysis of influencing factors of fretting wear with helicopter floating involute spline[J]. Journal of Aerospace Power,2021,36(4): 751-766. (in Chinese) doi: 10.13224/j.cnki.jasp.2021.04.008
    [15] NING P,LI Y,FENG Z Q. A newton-like algorithm to solve contact and wear problems with pressure-dependent friction coefficients[J]. Communications in Nonlinear Science and Numerical Simulation,2020,85: 105216.1-105216.22.
    [16] JIANG X,PAN F,SHAO G,et al. Prediction of electrical contact endurance subject to micro-slip wear using friction energy dissipation approach[J]. Friction,2019,7(6): 537-550. doi: 10.1007/s40544-018-0230-x
    [17] LI L,WEI Z,MA S,et al. Numerical analysis of fretting wear in lateral contact of sphere/sphere[J]. Proceedings of the Institution of Mechanical Engineers Part J: Journal of Engineering Tribology,2021,235(10): 2073-2085. doi: 10.1177/1350650120983677
    [18] PEARSON S R,SHIPWAY P H,ABERE J O,et al. The effect of temperature on wear and friction of a high strength steel in fretting[J]. Wear,2013,303(1/2): 622-631.
    [19] QIN W,JIN X,KIRK A,et al. Effects of surface roughness on local friction and temperature distributions in a steel-on-steel fretting contact[J]. Tribology International,2018,120: 350-357. doi: 10.1016/j.triboint.2018.01.016
    [20] SHEN F,ZHOU K. Investigation on thermal response in fretting sliding with the consideration of plastic dissipation, surface roughness and wear[J]. International Journal of Mechanical Sciences,2018,148: 94-102. doi: 10.1016/j.ijmecsci.2018.08.004
    [21] HAGER C H,SANDERS J,SHARMA S,et al. The effect of temperature on gross slip fretting wear of cold-sprayed nickel coatings on Ti6Al4V interfaces[J]. Tribology International,2009,42(3): 491-502. doi: 10.1016/j.triboint.2008.08.009
    [22] HAGER C H,SANDERS J H,SHARMA S. Unlubricated gross slip fretting wear of metallic plasma-sprayed coatings for Ti6Al4V surfaces[J]. Wear,2008,265(3/4): 439-451.
    [23] WANG L,ZHANG Q Y,LI X X,et al. Severe-to-mild wear transition of titanium alloys as a function of temperature[J]. Tribology Letters,2014,53(3): 511-520. doi: 10.1007/s11249-013-0289-5
    [24] PEREIRA K,YUE T,WAHAB M A. Multiscale analysis of the effect of roughness on fretting wear[J]. Tribology International,2017,110: 222-231. doi: 10.1016/j.triboint.2017.02.024
    [25] YUE T,WAHAB M A. Finite element analysis of fretting wear under variable coefficient of friction and different contact regimes[J]. Tribology International,2017,107: 274-282. doi: 10.1016/j.triboint.2016.11.044
    [26] BASSEVILLE S,MISSOUM D,CAILILLETAUD G. 3D finite element study of the fatigue damage of Ti-6Al-4V in presence of fretting wear[J]. Computational Mechanics,2019,64(3): 663-683. doi: 10.1007/s00466-019-01675-6
    [27] HOLMAN J P. Heat transfer[M]. Beijing: Mechanical Industry Press, 2005.
    [28] HANDBOOK M. MIL-HDBK-5H: metallic materials and elements for aerospace vehicle structures[M]. Washington DC: US Department of Defense, 1998.
    [29] YANG J,SUN S,BRANDT M,et al. Experimental investigation and 3D finite element prediction of the heat affected zone during laser assisted machining of Ti6Al4V alloy[J]. Journal of Materials Processing Technology,2010,210(15): 2215-2222. doi: 10.1016/j.jmatprotec.2010.08.007
    [30] SHEN F,HU W,MENG Q. A damage mechanics approach to fretting fatigue life prediction with consideration of elastic-plastic damage model and wear[J]. Tribology International,2015,82: 176-190. doi: 10.1016/j.triboint.2014.10.017
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  229
  • HTML浏览量:  119
  • PDF量:  104
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-29
  • 网络出版日期:  2022-12-23

目录

    /

    返回文章
    返回