留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声速支板燃烧室中氢气火焰的超大涡模拟

延冲 朴英

延冲, 朴英. 超声速支板燃烧室中氢气火焰的超大涡模拟[J]. 航空动力学报, 2023, 38(9):2142-2152 doi: 10.13224/j.cnki.jasp.20210739
引用本文: 延冲, 朴英. 超声速支板燃烧室中氢气火焰的超大涡模拟[J]. 航空动力学报, 2023, 38(9):2142-2152 doi: 10.13224/j.cnki.jasp.20210739
YAN Chong, PIAO Ying. Very-large eddy simulation of hydrogen flames in strut-based supersonic combustor[J]. Journal of Aerospace Power, 2023, 38(9):2142-2152 doi: 10.13224/j.cnki.jasp.20210739
Citation: YAN Chong, PIAO Ying. Very-large eddy simulation of hydrogen flames in strut-based supersonic combustor[J]. Journal of Aerospace Power, 2023, 38(9):2142-2152 doi: 10.13224/j.cnki.jasp.20210739

超声速支板燃烧室中氢气火焰的超大涡模拟

doi: 10.13224/j.cnki.jasp.20210739
详细信息
    作者简介:

    延冲(1994-),男,博士生,主要从事湍流燃烧数值模拟研究

  • 中图分类号: V411.3

Very-large eddy simulation of hydrogen flames in strut-based supersonic combustor

  • 摘要:

    采用超大涡模拟(VLES)方法对德国宇航中心(DLR)支板燃烧室中的超声速火焰进行了数值模拟,并使用基于守恒变量的爆炸模态分析方法(CCEMA)对火焰的稳定机理进行了分析。研究中采用了基于 k-ω 切应力输运(SST)模型的VLES湍流模型,以及基于Ingenito超声速燃烧模型(ISCM)和部分搅拌反应器(PaSR)模型的混合湍流燃烧模型。数值模拟方法预测的时间平均温度和流向速度分布与实验数据的吻合度较高。离散方法方面,提出了一种改进的低耗散激波捕捉格式,拥有更好激波分辨能力。相比原始格式,改进的格式进一步提高了燃烧室支板下游点火区内湍流/火焰结构的模拟保真度。火焰诊断结果表明:在着火点前,组分扩散、化学反应和激波压缩效应都对爆炸模态(CEM)起到正面促进作用。另外热爆炸效应相比自由基爆炸更为剧烈,说明了DLR燃烧室内的火焰稳定模式为扩散和压缩效应协助点火模式。

     

  • 图 1  不同截面处的平均温度和流向速度分布曲线

    Figure 1.  Averaged temperature and streamwise velocity profiles at different locations

    图 2  涡流强度等值面

    Figure 2.  Iso-surfaces of swirl-strength

    图 3  激波捕捉函数分布图

    Figure 3.  Shock-capturing function distributions

    图 4  温度分布图

    Figure 4.  Temperature distributions

    图 5  压力分布及等值线图

    Figure 5.  Pressure distributions and contour lines

    图 6  着火区温度和释热率分布图

    Figure 6.  Distributions of temperature and heat release rate in the ignition region

    图 7  瞬时分辨率控制函数分布图

    Figure 7.  Distributions of the instantaneous resolution control function

    图 8  着火区爆炸模态分布图以及组分OH、H、H2O的爆炸指标分布图

    Figure 8.  Distributions of chemical explosive mode and explosive indexes of species OH, H, H2O in the ignition region

    图 9  着火区温度分布图以及化学反应投影项、扩散投影项、可压缩性投影项分布图

    Figure 9.  Distributions of temperature and projection terms of chemical reaction, diffusion, compressibility in the ignition region

    表  1  自由来流及燃料入口条件

    Table  1.   Free stream and fuel inlet conditions

    参数空气燃料
    U/(m/s)7301200
    T/K340250
    p/Pa101325101325
    $w_{{\rm{O}}_2} $0.2320
    $w_{{\rm{N}}_2} $0.7360
    $w_{{\rm{H}}_2} $01
    $w_{{\rm{H}}_2{\rm{O}}} $0.0320
    注:表中U表示来流速度。
    下载: 导出CSV
  • [1] GONZALEZ-JUEZ E D,KERSTEIN A R,RANJAN R,et al. Advances and challenges in modeling high-speed turbulent combustion in propulsion systems[J]. Progress in Energy and Combustion Science,2017,60: 26-67. doi: 10.1016/j.pecs.2016.12.003
    [2] PIOMELLI U. Large-eddy simulation: achievements and challenges[J]. Progress in Aerospace Sciences,1999,35(4): 335-362. doi: 10.1016/S0376-0421(98)00014-1
    [3] JOHANSEN S T,WU J,WEI S. Filter-based unsteady RANS computations[J]. International Journal of Heat and Fluid Flow,2004,25(1): 10-21.
    [4] SPALART P R , JOU W H , STRELETS M , et al. Comments on the feasibility of LES for wings, and on hybrid RANS/LES approach[C]// Proceedings of first AFOSR international conference on DNS/LES. Columbus, US: Greyden Press, 1997: 4-8.
    [5] SPALART P R,DECK S,SHUR M L,et al. A new version of detached-eddy simulation, resistant to ambiguous grid densities[J]. Theoretical and Computational Fluid Dynamics,2006,20(3): 181-195. doi: 10.1007/s00162-006-0015-0
    [6] SHUR M L,SPALART P R,STRELETS M K,et al. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities[J]. International Journal of Heat and Fluid Flow,2008,29(6): 1638-1649. doi: 10.1016/j.ijheatfluidflow.2008.07.001
    [7] EDWARDS J R,BOLES J A,BAURLE R A. Large-eddy/Reynolds-averaged Navier-Stokes simulation of a supersonic reacting wall jet[J]. Combustion and Flame,2012,159(3): 1127-1138. doi: 10.1016/j.combustflame.2011.10.009
    [8] FULTON J A,EDWARDS J R,et al. Large-eddy/Reynolds-averaged Navier-Stokes simulations of reactive flow in dual-mode scramjet combustor[J]. Journal of Propulsion and Power,2014,30(3): 558-575. doi: 10.2514/1.B34929
    [9] 汪洪波,孙明波,吴海燕,等. 超声速燃烧凹腔质量交换特性的混合RANS/LES模拟[J]. 航空动力学报,2010,25(1): 41-46. doi: 10.13224/j.cnki.jasp.2010.01.025

    WANG Hongbo,SUN Mingbo,WU Haiyan,et al. Hybrid RANS/LES simulation of mass exchange characteristics of cavity for supersonic combustion[J]. Journal of Aerospace Power,2010,25(1): 41-46. (in Chinese) doi: 10.13224/j.cnki.jasp.2010.01.025
    [10] SPEZIALE C G. Turbulence modeling for time-dependent RANS and VLES: a review[J]. AIAA Journal,1998,36(2): 173-184. doi: 10.2514/2.7499
    [11] HAN X,KRAJNOVIC S. An efficient very large eddy simulation model for simulation of turbulent flow[J]. International Journal for Numerical Methods in Fluids,2013,71(11): 1341-1360. doi: 10.1002/fld.3714
    [12] XIA Z,CHENG Z,HAN X,et al. VLES turbulence modelling for separated flow simulation with OpenFOAM[J]. Journal of Wind Engineering and Industrial Aerodynamics,2020,198: 104077.1-104077.16. doi: 10.1016/j.jweia.2019.104077
    [13] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal,1994,32(8): 1598-1605. doi: 10.2514/3.12149
    [14] EDWARDS J R,CHOI J I,BOLES J A. Large-eddy/Reynolds-averaged Navier-Stokes simulation of a Mach 5 compression-corner interaction[J]. AIAA Journal,2008,46(4): 977-991. doi: 10.2514/1.32240
    [15] WU J,WANG Z,BAI X,et al. The hybrid RANS/LES of partially premixed supersonic combustion using G/Z flamelet model[J]. Acta Astronautica,2016,127(10/11.): 375-383.
    [16] 王慧, 侯凌云. 碳氢燃气超声速剪切流动燃烧数值模拟[J]. 航空动力学报, 2007, 22(4): 559-564.

    WANG Hui, HOU Lingyun. Numerical simulation of hydrocarbon gas combustion and supersonic shear flow[J]. Journal of Aerospace Power, 2007, 22(4): 559-564. (in Chinese)
    [17] PIROZZOLI S. Conservative hybrid compact-WENO schemes for shock-turbulence interaction[J]. Journal of Computational Physics,2002,178(1): 81-117. doi: 10.1006/jcph.2002.7021
    [18] DUCROS F,FERRAND V,NICOUD F,et al. Large-eddy simulation of the shock turbulence interaction[J]. Journal of Computational Physics,1999,152(2): 517-549. doi: 10.1006/jcph.1999.6238
    [19] HILL D J,PULLIN D I. Hybrid tuned center-difference-WENO method for large eddy simulations in the presence of strong shocks[J]. Journal of Computational Physics,2004,194(2): 435-450. doi: 10.1016/j.jcp.2003.07.032
    [20] WAIDMANN W A,BÖHM M,BRUMMUND U,et al. Supersonic combustion of hydrogen/air in a scramjet combustion chamber[J]. Space Technology,1994,15(6): 421-429.
    [21] INGENITO A,BRUNO C. Physics and regimes of supersonic combustion[J]. AIAA Journal,2010,48(3): 515-525. doi: 10.2514/1.43652
    [22] FUREBY C. A comparative study of subgrid models, reaction mechanisms and combustion models in LES of supersonic combustion[R]. AIAA 2019-4273, 2019.
    [23] WU W,PIAO Y,LIU H. Analysis of flame stabilization mechanism in a hydrogen-fueled reacting wall-jet flame[J]. International Journal of Hydrogen Energy,2019,44(48): 26609-26623. doi: 10.1016/j.ijhydene.2019.08.073
    [24] HAN X, KRAJNOVIĆ S. Very large-eddy simulation based on k-ω Model[J]. AIAA Journal 2015, 53(4): 1103-1108
    [25] MENTER F R. Review of the shear-stress transport turbulence model experience from an industrial perspective[J]. International Journal of Computational Fluid Dynamics,2009,23(4): 305-316. doi: 10.1080/10618560902773387
    [26] POPE S B. Turbulent flows[M]. Cambridge, UK: Cambridge University Press, 2000.
    [27] BERGLUND M,FUREBY C. LES of supersonic combustion in a scramjet engine model[J]. Proceedings of the Combustion Institute,2007,31(2): 2497-2504. doi: 10.1016/j.proci.2006.07.074
    [28] FUREBY C,CHAPUIS M,FEDINA E,et al. CFD analysis of the HyShot Ⅱ scramjet combustor[J]. Proceedings of the Combustion Institute,2011,33(2): 2399-2405. doi: 10.1016/j.proci.2010.07.055
    [29] INGENITO A, BRUNO C. Mixing and combustion in supersonic reactive flows[R]. AIAA 2008-4574, 2008.
    [30] CONAIRE M,CURRAN H J,SIMMIE J M,et al. A comprehensive modeling study of hydrogen oxidation[J]. International Journal of Chemical Kinetics,2004,36(11): 603-622. doi: 10.1002/kin.20036
    [31] TORO E F. The HLLC Riemann solver[J]. Shock Waves,2019,29(8): 1065-1082. doi: 10.1007/s00193-019-00912-4
    [32] WU W,PIAO Y,XIE Q,et al. Flame diagnostics with a conservative representation of chemical explosive mode analysis[J]. AIAA Journal,2019,57(4): 1355-1363. doi: 10.2514/1.J057994
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  131
  • HTML浏览量:  80
  • PDF量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-30
  • 网络出版日期:  2022-12-20

目录

    /

    返回文章
    返回