留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于深度学习的压气机叶型气动特性预测

杜周 徐全勇 宋振寿 王晗丁 马玉林

杜周, 徐全勇, 宋振寿, 等. 基于深度学习的压气机叶型气动特性预测[J]. 航空动力学报, 2023, 38(9):2251-2260 doi: 10.13224/j.cnki.jasp.20210741
引用本文: 杜周, 徐全勇, 宋振寿, 等. 基于深度学习的压气机叶型气动特性预测[J]. 航空动力学报, 2023, 38(9):2251-2260 doi: 10.13224/j.cnki.jasp.20210741
DU Zhou, XU Quanyong, SONG Zhenshou, et al. Prediction of aerodynamic characteristics of compressor blade profile based on deep learning[J]. Journal of Aerospace Power, 2023, 38(9):2251-2260 doi: 10.13224/j.cnki.jasp.20210741
Citation: DU Zhou, XU Quanyong, SONG Zhenshou, et al. Prediction of aerodynamic characteristics of compressor blade profile based on deep learning[J]. Journal of Aerospace Power, 2023, 38(9):2251-2260 doi: 10.13224/j.cnki.jasp.20210741

基于深度学习的压气机叶型气动特性预测

doi: 10.13224/j.cnki.jasp.20210741
基金项目: 国家科技重大专项(J2019-Ⅴ-0001-0092,J2019-Ⅴ-0013-0108)
详细信息
    作者简介:

    杜周(1996-),男,硕士生,主要从事流体仿真与人工智能相结合方面的研究。E-mail:321115728@qq.com

    通讯作者:

    徐全勇(1980-),男,副教授,博士,主要从事航空发动机气动热力学方面的研究。E-mail:xuquanyong@tsinghua.edu.cn

  • 中图分类号: V231.3

Prediction of aerodynamic characteristics of compressor blade profile based on deep learning

  • 摘要:

    采用了数值模拟与机器学习相结合的方式对压气机双圆弧叶型流场气动参数预测开展了研究。对双圆弧叶型进行参数化批量建模,通过计算流体力学进行数值模拟,将数值模拟的模型数据与气动性能的映射提供给多层神经网络(MLP)和卷积神经网络(CNN)进行学习,分别对预测模型的准确率进行了测试比较。研究发现:通过深度学习的方式可以有效的对压气机内部流场气动参数进行准确预测,该模型预测的压力系数误差率小于0.2%,总压损失系数误差率小于1.2%,并证明CNN在气动参数预测的精度上优于传统全连接神经网络。

     

  • 图 1  典型压气机气动设计流程

    Figure 1.  Typical compressor aerodynamic design process

    图 2  双圆弧叶型

    Figure 2.  Double-circular-arc profile

    图 3  计算域截面图

    Figure 3.  Computational domain cross section diagram

    图 4  截面网格

    Figure 4.  Cross section grid

    图 5  叶型边界层网格

    Figure 5.  Boundary layer grid of blade profile

    图 6  叶栅流场速度矢量图

    Figure 6.  Velocity vector diagram of cascade flow field

    图 7  叶栅流场压力云图

    Figure 7.  Pressure cloud diagram of cascade flow field

    图 8  叶栅流场马赫数云图

    Figure 8.  Mach number cloud diagram of cascade flow field

    图 9  样本的Cp分布

    Figure 9.  Cp distribution of the sample

    图 10  样本的$ \omega $分布

    Figure 10.  $ \omega $ distribution of the sample

    图 11  实验工况下叶栅马赫数云图

    Figure 11.  Cascade Mach number cloud diagram under experimental conditions

    图 12  实验与CFD仿真Cp对比

    Figure 12.  Comparison of Cp between experiment and CFD simulation

    图 13  LeNet-5结构

    Figure 13.  LeNet-5 structure

    图 14  ResNet基本的残差单元

    Figure 14.  ResNet basic residual element

    图 15  ReLU 激励函数

    Figure 15.  ReLU excitation function

    图 16  叶型气动参数预测流程

    Figure 16.  Blade aerodynamic parameters prediction process

    图 17  9个叶型流场轮廓

    Figure 17.  9 blade profile flow field contours

    图 18  Cp训练误差

    Figure 18.  Cp training error

    图 19  $ \omega $训练误差

    Figure 19.  $ \omega $ training error

    图 20  Cp预测结果

    Figure 20.  Cp prediction results

    图 21  $ \omega $预测结果

    Figure 21.  $ \omega $ Forecast results

    表  1  ResNet-34 结构

    Table  1.   ResNet-34 architecture

    层名输出大小参数结构
    Conv1143×2187×7,64,步长 2
    Conv272×1093×3 最大池化,步长 2
    $\left[ {\begin{array}{*{20}{l}} {3 \times 3,}&{64} \\ {3 \times 3,}&{64} \end{array}} \right] \times 3$
    Conv336×55$\left[ {\begin{array}{*{20}{l}} {3 \times 3,}&{128} \\ {3 \times 3,}&{128} \end{array}} \right] \times 4$
    Conv418×28$\left[ {\begin{array}{*{20}{l}} {3 \times 3,}&{256} \\ {3 \times 3,}&{256} \end{array}} \right] \times 6$
    Conv59×14$\left[ {\begin{array}{*{20}{l}} {3 \times 3,}&{512} \\ {3 \times 3,}&{512} \end{array}} \right] \times 3$
    Output1×1平均池化, 1-D 全连接
    下载: 导出CSV

    表  2  对比测试结果

    Table  2.   Comparison of test results

    比较方法Cp$ \omega $
    ErmsEr/%ErmsEr/%
    方法10.15042.8720.247510.45
    方法20.27925.3320.326313.78
    ResNet-180.00970.1840.02931.256
    ResNet-500.01260.2400.03131.343
    ResNet-340.00910.1730.2781.192
    下载: 导出CSV
  • [1] 张伟伟,寇家庆,刘溢浪. 智能赋能流体力学展望[J]. 航空学报,2021,42(4): 26-71.

    ZHANG Weiwei,KOU Jiaqing,LIU Yilang. Prospect of artificial intelligence empowering fluid mechanics[J]. Acta Aeronautica et Astronautica Sinica,2021,42(4): 26-71. (in Chinese)
    [2] 张伟伟,朱林阳,刘溢浪,等. 机器学习在湍流模型构建中的应用进展[J]. 空气动力学学报,2019,37(3): 444-454.

    ZHANG Weiwei,ZHU Linyang,LIU Yilang,et al. Progresses in the application of machine learning in turbulence modeling[J]. Acta Aerodynamica Sinica,2019,37(3): 444-454. (in Chinese)
    [3] 李義進,宋紅超,周帥,等. 人工智能在计算流体力学中的应用[J]. 航空动力,2018(1): 57-59.

    LI Yijin,SONG Hongchao,ZHOU Shuai,et al. The application of artificial intelligence on computational fluid dynamics[J]. Aerospace Power,2018(1): 57-59. (in Chinese)
    [4] 陈海昕,邓凯文,李润泽. 机器学习技术在气动优化中的应用[J]. 航空学报,2019,40(1): 52-68.

    CHEN Haixin,DENG Kaiwen,LI Runze. Utilization of machine learning technology in aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica,2019,40(1): 52-68. (in Chinese)
    [5] FONT B,WEYMOUTH G D,NGUYEN V T,et al. Deep learning of the spanwise-averaged Navier-Stokes equations[J]. Journal of Computational Physics,2021,434(10): 110199.1-110199.25.
    [6] 王述之,战林浩,曹博超,等. 基于直接数值模拟数据和神经网络的湍流封闭模型构建[J]. 水动力学研究与进展:A辑,2020,35(2): 141-154.

    WANG Shuzhi,ZHAN Linhao,CAO Bochao,et al. Turbulence closure model based on neural network and direct numerical simulation data[J]. Chinese Journal of Hydrodynamics: Series A,2020,35(2): 141-154. (in Chinese)
    [7] 尹宇辉, 杨普, 张宇飞. 基于机器学习的湍流建模研究[R]. 杭州: 中国力学大会, 2019.
    [8] 陈海,钱炜祺,何磊. 基于深度学习的翼型气动系数预测[J]. 空气动力学学报,2018,36(2): 294-299.

    CHEN Hai,QIAN Weiqi,HE Lei. Aerodynamic coefficient prediction of airfoils based on deep learning[J]. Acta Aerodynamica Sinica,2018,36(2): 294-299. (in Chinese)
    [9] ZHANG Y, SUNG W J, MAVRIS D. Application of convolutional neural network to predict airfoil lift coefficient[R]. Kissimmee, US: AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2018.
    [10] 何磊,钱炜祺,汪清,等. 机器学习方法在气动特性建模中的应用[J]. 空气动力学学报,2019,37(3): 470-479.

    HE Lei,QIAN Weiqi,WANG Qing,et al. Applications of machine learning for aerodynamic characteristics modeling[J]. Acta Aerodynamica Sinica,2019,37(3): 470-479. (in Chinese)
    [11] 刘凌君,周越,高振勋. 基于神经网络的翼型气动力计算和反设计方法[J]. 气体物理,2018,3(5): 41-47.

    LIU Lingjun,ZHOU Yue,GAO Zhenxun. Aerodynamic force calculation and inverse design for airfoil based on neural network[J]. Physics of Gases,2018,3(5): 41-47. (in Chinese)
    [12] 姚琳. 机器学习在翼型优化问题中的应用[J]. 航天标准化,2020(1): 43-47.

    YAO Lin. Application of machine learning in airfoil optimization[J]. Aerospace Standardization,2020(1): 43-47. (in Chinese)
    [13] SEKAR V,ZHANG M,SHU C,et al. Inverse design of airfoil using a deep convolutional neural network[J]. AIAA Journal,2019,57(3): 993-1003. doi: 10.2514/1.J057894
    [14] 廖鹏,姚磊江,白国栋,等. 基于深度学习的混合翼型前缘压力分布预测[J]. 航空动力学报,2019,34(8): 1751-1758.

    LIAO Peng,YAO Leijiang,BAI Guodong,et al. Prediction of hybrid airfoil leading edge pressure distribution based on deep learning[J]. Journal of Aerospace Power,2019,34(8): 1751-1758. (in Chinese)
    [15] SEKAR V,KHOO B C. Fast flow field prediction over airfoils using deep learning approach[J]. Physics of Fluids,2019,31(5): 057103.1-057103.14.
    [16] 艾子健,秦国良,陈雪飞,等. 翼型叶片精确参数化建模的研究及应用[J]. 流体机械,2015,43(8): 36-40.

    AI Zijian,QIN Guoliang,CHEN Xuefei,et al. Research and application on accurate parametric modeling for aerofoil blade[J]. Fluid Machinery,2015,43(8): 36-40. (in Chinese)
    [17] AUNGIER R H. Axial-flow compressors-a strategy for aerodynamic design and analysis[M]. New York: ASME Press, 2003.
    [18] FOTTNER L. Test cases for computation of internal flows in aero engine components[R]. AGARD Advisory Report No. 275, 1990.
    [19] STARK U,HOHEISEL H. The combined effect of axial velocity density ratio and aspect ratio on compressor cascade performance[J]. Journal of Engineering for Power,1981,103(1): 247-255.
    [20] LECUN Y,BOTTOU L,BENGIO Y,et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE,1998,86(11): 2278-2324. doi: 10.1109/5.726791
    [21] GLOROT X, BENGIO Y. Understanding the difficulty of training deep feedforward neural networks[R]. Sardinia, Italy: the 13th International Conference on Artificial Intelligence and Statistics, 2010.
    [22] ELMAN J L. Learning and development in neural networks: the importance of starting small[J]. Cognition,1993,48(1): 71-99. doi: 10.1016/0010-0277(93)90058-4
    [23] GOODFELLOW I, WARDE-FARLEY D, MIRZA M, et al. Maxout networks[R]. Atlanta, US: International Conference on Machine Learning, 2013.
    [24] KRIZHEVSKY A,SUTSKEVER I,HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems,2012,25: 1097-1105.
    [25] BOUREAU Y L, BACH F, LECUN Y, et al. Learning mid-level features for recognition[R]. San Francisco, US: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010.
    [26] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[R]. Las Vegas, US: IEEE Conference on Computer Vision and Pattern Recognition, 2016.
  • 加载中
图(21) / 表(2)
计量
  • 文章访问数:  205
  • HTML浏览量:  26
  • PDF量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-31
  • 网络出版日期:  2023-06-08

目录

    /

    返回文章
    返回