留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

各推力级霍尔推力器研究现状与展望

刘洋 张晓天

刘洋, 张晓天. 各推力级霍尔推力器研究现状与展望[J]. 航空动力学报, 2022, 37(12):2782-2796 doi: 10.13224/j.cnki.jasp.20220003
引用本文: 刘洋, 张晓天. 各推力级霍尔推力器研究现状与展望[J]. 航空动力学报, 2022, 37(12):2782-2796 doi: 10.13224/j.cnki.jasp.20220003
LIU Yang, ZHANG Xiaotian. Status and prospect of Hall thruster of different thrust stages[J]. Journal of Aerospace Power, 2022, 37(12):2782-2796 doi: 10.13224/j.cnki.jasp.20220003
Citation: LIU Yang, ZHANG Xiaotian. Status and prospect of Hall thruster of different thrust stages[J]. Journal of Aerospace Power, 2022, 37(12):2782-2796 doi: 10.13224/j.cnki.jasp.20220003

各推力级霍尔推力器研究现状与展望

doi: 10.13224/j.cnki.jasp.20220003
详细信息
    作者简介:

    刘洋(1987-),男,副研究员,博士生,主要研究方向为载人航天工程

    通讯作者:

    张晓天(1984-),男,副教授,博士,主要研究方向为航天飞行器结构机构技术。E-mail:zhangxiaotian@buaa.edu.cn

  • 中图分类号: V439

Status and prospect of Hall thruster of different thrust stages

  • 摘要:

    介绍了霍尔推力器原理的基础上,推导分析了霍尔推力器推力的影响因素,总结了改变其推力的主要方法。概述了微牛级、毫牛级和牛级等不同推力级适用的航天任务类型,按照3个级别对国内外霍尔推力器型号进行了分类,分别对3个推力级各系列型号的发展及趋势进行了梳理与分析。对各推力级霍尔推力器发展的关键技术进行了展望。针对其中的技术瓶颈与发展趋势进行了总结分析。全面、系统地针对各推力级霍尔推力器进行了综述。结果表明:毫牛级发展最为成熟的推力级,而随着航天任务类型逐渐丰富,微牛级和牛级霍尔推力器发展潜力愈发突出;研究结果提出了霍尔推进器应提升整体性能、扩展推力覆盖范围,强化多模式工作能力,发展空心阴极以及探究不同推进剂等建议。该研究结果对于霍尔电推进的进一步发展具有参考价值。

     

  • 图 1  霍尔电推进工作原理示意图

    Figure 1.  Schematic diagram of working principle of Hall electric propulsion

    图 2  SPT-100霍尔电推进系统

    Figure 2.  SPT-100 Hall electric propulsion system

    图 3  SPT-140不同模式下试验

    Figure 3.  Spt-140 experiment under different modes

    图 4  KM系列霍尔推力器

    Figure 4.  KM series Hall thruster

    图 5  法国SNECMA公司PPS-1350霍尔推力器

    Figure 5.  France SNECMA corporation PPS-1350 Hall thruster

    图 6  BHT-200-I和BHT-600-I

    Figure 6.  BHT-200-I and BHT-600-I

    图 7  BPT-4000霍尔推力器

    Figure 7.  BPT-4000 Hall thruster

    图 8  XR-12霍尔推力器

    Figure 8.  XR-12 Hall thruster

    图 9  NASA-77M和NASA-103M.XL.

    Figure 9.  NASA-77M and NASA-103M.XL.

    图 10  微牛级会切型霍尔推力器试验样机

    Figure 10.  Experimental prototype of micro-Newton class Hall thruster

    表  1  3种不同推力水平的电推力器特征及应用

    Table  1.   Characteristics and application of three kinds of electric thrusters with different thrust levels

    推力量级应用场景寿命要求/年工作特征
    微牛级姿态控制
    飞轮卸载
    空间引力波探测
    15~20数十瓦功率
    精确最小冲量为2×10−5 N·s
    毫牛级南北位置保持
    东西位置保持
    深空探测
    轨道修正
    气动补偿
    矢量定位
    20数十瓦至数千瓦功率
    对南北位置保持,最小冲量为2×10−3 N·s
    100 kg航天器质量每年能够产生46000 N·s的总冲量
    牛级轨道提升
    星际旅行
    太阳系考察
    3数千瓦以上功率
    间断或连续工作
    下载: 导出CSV

    表  2  毫牛级SPT系列霍尔推力器性能参数[3]

    Table  2.   Performance parameters of milli-Newton SPT series Hall thruster[3]

    参数SPT-50/60SPT-70SPT-100SPT-140SPT-200
    加速通道外径/mm50~6070100140200
    推力/mN10~50020~10040~20080~400150~600
    比冲/s1570160018101950
    喷气速度/(km/s)1216202530
    额定功率/W0.71.53.06.012.0
    效率/%4050506060~70
    发展状态工程产品工程产品工程产品工程产品试验样机
    下载: 导出CSV

    表  3  BHT系列霍尔推力器性能参数

    Table  3.   Performance parameters of BHT series Hall thruster

    参数BHT-100BHT-200BHT-350BHT-600BHT-1500BHT-6000
    输入功率/W10020030060015006000
    推力/mN7131739101201-325
    比冲/s100013901244150017101 900~2100
    总冲量/(kN·s)>250>140>250>1000>6500>8500
    适用工质Xe或IXe或IXe或Kr或IXe或Kr或IXe或Kr或IXe或Kr或I
    下载: 导出CSV
  • [1] 康小录,张岩. 空间电推进技术应用现状与发展趋势[J]. 上海航天,2019,36(6): 24-34. KANG Xiaolu,ZHANG Yan. Application status and development trend of space electric propulsion technology[J]. Aerospace Shanghai,2019,36(6): 24-34. (in Chinese
    [2] 康小录,杭观荣,朱智春. 霍尔电推进技术的发展与应用[J]. 火箭推进,2017,43(1): 8-17. KANG Xiaolu,HANG Guanrong,ZHU Zhichun. Development and application of Hall electric propulsion technology[J]. Journal of Rocket Propulsion,2017,43(1): 8-17. (in Chinese
    [3] 于达仁. 空间电推进原理[M]. 哈尔滨: 哈尔滨工业大学出版社, 2014.
    [4] 张雪儿,李得天,张天平. 电推进三种比冲的定义及其工程应用[J]. 真空与低温,2020,26(6): 486-493. ZHANG Xueer,LI Detian,ZHANG Tianping. Three types of specific impulses for electric propulsions: their definitions and engineering applications[J]. Vacuum and Cryogenics,2020,26(6): 486-493. (in Chinese
    [5] HOFER R, JANKOVSKY R. A hall thruster performance model incorporating the effects of a multiply-charged plasma[R]. Salt Lake City, US: the 37th Joint Propulsion Conference and Exhibit, 2001.
    [6] GOEBEL D M, KATZ I. Fundamentals of electric propulsion: ion and hall thrusters[M]. Hoboken, US: John Wiley and Sons Incorporation, 2008.
    [7] 陈杰, 康小录, 赵震, 等. 高比冲霍尔推力器研究现状[R]. 南京: 中国航天第三专业信息网第40届技术交流会暨第4届空天动力联合会议, 2019.
    [8] HOFER R R,JOHNSON L K,GOEBEL D M,et al. Effects of internally mounted cathodes on Hall thruster plume properties[J]. IEEE Transactions on Plasma Science,2008,36(5): 2004-2014. doi: 10.1109/TPS.2008.2000962
    [9] CONVERSANO R W,LOBBIA R B,KERBER T V,et al. Performance characterization of a low-power magnetically shielded Hall thruster with an internally-mounted hollow cathode[J]. Plasma Sources Science and Technology,2019,28(10): 105011.1-105011.14.
    [10] SOMMERVILLE J, KING L. Effect of cathode position on Hall-effect thruster performance and cathode coupling voltage[R] Cincinnati, US: the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2007.
    [11] PATTERSON M J, THOMAS R, CROFTON M W, et al. High thrust-to-power annular engine technology[R] Orlando, US: the 51st AIAA/SAE/ASEE Joint Propulsion Conference, 2015.
    [12] ITO T,GASCON N,CRAWFORD W S,et al. Experimental characterization of a micro-Hall thruster[J]. Journal of Propulsion and Power,2007,23(5): 1068-1074. doi: 10.2514/1.27140
    [13] 于达仁,牛翔,王泰卜,等. 面向空间引力波探测任务的微推进技术研究进展[J]. 中山大学学报 (自然科学版),2021,60(1/2): 194-212. YU Daren,NIU Xiang,WANG Taibu,et al. The developments of micro propulsion technology based on space gravitational wave detection task[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni,2021,60(1/2): 194-212. (in Chinese
    [14] HEY F G. Micro Newton thruster development: direct thrust measurements and thruster downscaling[M]. Berlin, German: Springer, 2018.
    [15] IKEDA T, TOGAWA K, TAHARA H, et al. Performance characteristics of very low power cylindrical Hall thrusters for the Nano-satellite “PROITERES-3” [R]. Hakone, Japan: the 8th International Symposium on Applied Plasma Science (ISAPS), 2011.
    [16] ZAKIROV V,PAVSHOOK V. Feasibility of the recent Russian nuclear electric propulsion concept: 2010[J]. Nuclear Engineering and Design,2011,241(5): 1529-1537. doi: 10.1016/j.nucengdes.2011.02.010
    [17] GORBUNOV A V, KHODNENKO V P, KHROMOV A V, et al. Vernier propulsion system for small earth remote sensing satellite “Canopus-V”[R]. Wiesbaden, Germany: the 32nd International Electric Propulsion Conference, 2011.
    [18] BOBER A, KOZULOSKY K, KOMARROW G, et al. Development and qualification test of a SPT electric propulsion system for “Gals” spacecraft[R]. Seattle, US: the 23rd International Electric Propulsion Conference, 1993.
    [19] MITROFANOVA O A, GNIZDOR R Y, MURASHKO V M, et al. New generation of SPT-100[R] Wiesbaden, Germany: the 32nd International Electric Propulsion Conference, 2011.
    [20] COREY R L, PIDGEON D J. Electric propulsion at space systems/Loral[R]. International Electric Propulsion Conference, IEPC-2009-270, 2009.
    [21] SNYDER J S, HOFER R R. Throttled performance of the SPT-140 Hall thruster[R] Cleveland, US: the 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2014.
    [22] JAMESON-SILVA K, DELGADO J J, LIANG R, et al. Adaptability of the SSL electric propulsion-140 subsystem for use on a NASA discovery class missions: psyche[R]. Atlanta, US: the 35th International Electric Propulsion Conference, 2017.
    [23] DELGADO J J. QUALIFICATION of the SPT-140 for use on Western Spacecraft[R]. Cleveland, US: the 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2014.
    [24] MURASHKO V, KORYAKIN A, NYATIN A, et al. State of the art and prospects of electric propulsion in Russia[R]. International Electric Propulsion Conference, IEPC-2003-340, 2003.
    [25] GORSHKOV O A,BELIKOV M B,MURAVLEV V A,et al. The GEOSAT electrical propulsion subsystem based on the KM-45 HET[J]. Acta Astronautica,2008,63(1/2/3/4): 367-378.
    [26] VASIN A I,KOROTEEV A S,LOVTSOV A S,et al. Review of works on electric propulsion at Keldysh Research Center[J]. Trudy MAI,2012,13(60): 70-79.
    [27] BELIKOV M B, BLINOV N V, GORSHKOV O A, et al. Operation peculiarities of Hall thruster with power 1.5—2.0 kW at high discharge voltages[R]. Toulouse, France: the 28th International Electric Propulsion Conference, 2003.
    [28] LOVTSOV A S, TOMILIN D A, MURAVLEV V A. Development of high-voltage hall effect thrusters at Keldysh Research Centre[R]. Adelaide, Australia: the International Astronautical Congress, 2017
    [29] GORSHKOV D O, SHAGAYDA D A, MURAVLEV M V. The experience of hall thruster research and development[R]. Valencia, Spain: the 57th International Astronautical Congress, 2006.
    [30] KIM V, POPOV G, ARKHIPOV B, et al. Electric propulsion activity in Russia[R]Pasadena, US: the 27 International Electric Propulsion Conference, 2001.
    [31] LYNN P, OSBORN M, SANKOVIC J, et al. Electric propulsion demonstration module (EPDM) flight Hall thruster system[R]. Cleveland, US: the International Electric Propulsion Conference Proceedings, 1997.
    [32] OSBORN M F, LYNN P, SUTTON R. RHETT/EPDM flight xenon flow system development[R]. Cleveland, US: the 25th International Electric Propulsion Conference, 1997.
    [33] VALENTIAN D, MASLENNIKOV N. The PPS 1350 program[R]. Cleveland, US: the 25th International Electric Propulsion Conference, 1997.
    [34] GARNERO P. ASTRA 1K and STENTOR plasma propulsion subsystem experience[R]. Huntsville, US: the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2003.
    [35] KOPPEL C, LYSZYK M, VALENTIAN D, et al. PPS 1350 with variable power features for SMART 1[R]. Huntsville, US: the 6th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2000.
    [36] DUCHEMIN O, DUMAZERT P, ESTUBLIER D, et al. Stretching the operational envelope of the PPS® X000 plasma thruster[R]. Fort Lauderdale, US: the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2004.
    [37] VIAL V, DUCHEMIN O. Optimization of the PPS® X000-technological demonstrator for high ISP operation[R]. Denver, US: the 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2009.
    [38] DUCHEMIN O, DUMAZERT P, ESTUBLIER D, et al. Testing the PPS X000 plasma thruster at high discharge voltage[R]. International Spacecraft Propulsion Conference, ISPC-2004-555, 2004.
    [39] MONHEISER J,HRUBY V,FREEMAN C,et al. Development and testing of a low-power Hall thruster system[J]. Micropropulsion for Small Spacecraft,2000,187: 255-270.
    [40] SZABO J J, POTE B, TEDRAKE R, et al. High throughput 600-watt Hall effect thruster for space exploration[R]. Salt Lake City, US: the 52nd AIAA/SAE/ASEE Joint Propulsion Conference, 2016
    [41] Busek Company Incorporation. Hall effect thrusters[EB/OL]. [2021-11-13]. https://www.busek.com/hall-thrusters
    [42] KAMHAWI H, HAAG T, BENAVIDES G, et al. Overview of iodine propellant Hall thruster development activities at NASA Glenn Research Center[R]. Salt Lake City, US: the 52nd AIAA/SAE/ASEE Joint Propulsion Conference, 2016.
    [43] FISHER J, WILSON A, KING D, et al. The development and qualification of a 4.5 kW Hall thruster propulsion system for GEO satellite applications[R] Pasadena, US: the 27th International Electric Propulsion Conference, 2001.
    [44] DE GRYS K, MATHERS A, WELANDER B, et al. Demonstration of 10, 400 hours of operation on 4.5 kw qualification model hall thruster[R]. Nashville, US: the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2010.
    [45] KING D, TILLEY D, AADLAND R, et al. Development of the BPT family of US-designed hall current thrusters for commercial LEO and GEO applications[R]. Cleveland, US: the 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 1998.
    [46] MATHERS A, DE GRYS K, PAISLEY J. Performance variation in BPT-4000 Hall thrusters[R]. International Electric Propulsion Conference, IEPC-2009-144, 2009.
    [47] 杭观荣,康小录. 美国AEHF军事通信卫星推进系统及其在首发星上的应用[J]. 火箭推进,2011,37(6): 1-8. HANG Guanrong,KANG Xiaolu. Propulsion system of USA AEHF military communication satellite and its application on AEHF-1 satellite[J]. Journal of Rocket Propulsion,2011,37(6): 1-8. (in Chinese
    [48] WELANDER B, MONHEISER J, MECKEL N, et al. Demonstration of the XR-12 Hall Current Thruster[R]. Washington D C: the 33rd International Electric Propulsion Conference, 2013.
    [49] HOFER R R,JANKOVSKY R S,GALLIMORE A D. High-specific impulse Hall thrusters: Part 1 influence of current density and magnetic field[J]. Journal of Propulsion and Power,2006,22(4): 721-731. doi: 10.2514/1.15952
    [50] PETERSON P, KAMHAWI H, MANZELLA D, et al. Hall thruster technology for NASA science missions: HiVHAC status update[R]. Cincinnati, US: the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2007.
    [51] MISURI T, DUCCI C, GREGUCCI S, et al. SITAEL HT100 thruster unit, full ground qualification[C]//Proceedings of the 36th International Electric Propulsion Conference. Vienna, Austria: University of Vienna Press, 2019: 15-20.
    [52] RAFAEL I. VEN μS–A novel technological mission using electric propulsion[R]. Atlanta, US: the 35th International Electric Propulsion Conference, 2017.
    [53] KIM E H,KIM Y H,PARK J S,et al. Orbit evolution analysis of DubaiSat-2 using hall-effect thruster[J]. Journal of the Korean Society for Aeronautical and Space Sciences,2015,43(4): 377-386.
    [54] PIRAGINO A, LEPORINI A, GIANNETTI V, et al. Characterization of a 20 kW-class hall effect thruster[R]. Atlanta, US: the 35th International Electric Propulsion Conference, 2017.
    [55] SOULAS G, HAAG T, HERMAN D, et al. Performance test results of the NASA-457M v2 Hall thruster[R]. Atlanta, US: the 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2012.
    [56] PETERSON P, JACOBSON D, MANZELLA D, et al. The performance and wear characterization of a high-power high-ISP NASA Hall thruster[R]. Tucson, US: the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2005.
    [57] KAMHAWI H, HAAG T, JACOBSON D, et al. Performance evaluation of the NASA-300M 20 kW Hall thruster[R]. San Diego, US: the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2011.
    [58] HALL S J, JORNS B J, GALLIMORE A D, et al. High-power performance of a 100-kW class nested Hall thruster[R]. International Electric Propulsion Conference, IEPC-2017-228, 2017.
    [59] ZURBACH S, CORNU N, LASGORCEIX P. Performance evaluation of a 20 kW hall effect thruster[R]. International Electric Propulsion Conference, IEPC-2011-33, 2011.
    [60] 于达仁, 崔凯, 刘辉, 等. 用于引力波探测的微牛级霍尔电推进技术[J]. 哈尔滨工业大学学报, 2020, 52(6): 171-181.

    YU Daren, CUI Kai, LIU Hui, et al. Micro-newton hall electric propulsion technology for gravitational wave detection[J]. Journal of Harbin Institute of Technology, 2020, 52(6): 171-181. (in Chinese)
    [61] YANLIN H U,DAWEI H U,PENGAN W U,et al. Development of HEP-XXMF series hall thrusters in BICE[J]. Aerospace China,2019,17(2): 9-16.
    [62] 于达仁,乔磊,蒋文嘉,等. 中国电推进技术发展及展望[J]. 推进技术,2020,41(1): 1-11. YU Daren,QIAO Lei,JIANG Wenjia,et al. Development and prospect of electric propulsion technology in China[J]. Journal of Propulsion Technology,2020,41(1): 1-11. (in Chinese
    [63] 田立成,赵成仁,张天平,等. SJ-17卫星LHT-100霍尔电推进系统飞行试验工作性能评价[J]. 推进技术,2017,38(11): 2411-2421. TIAN Licheng,ZHAO Chengren,ZHANG Tianping,et al. Flight test performance evaluation of LHT-100 Hall electric propulsion system on SJ-17 satellite[J]. Journal of Propulsion Technology,2017,38(11): 2411-2421. (in Chinese
    [64] 张天平. 兰州空间技术物理研究所电推进新进展[J]. 火箭推进,2015,41(2): 7-12. ZHANG Tianping. New progress of electric propulsion technology in LIP[J]. Journal of Rocket Propulsion,2015,41(2): 7-12. (in Chinese
    [65] RAITSES Y, FISCH N J, BURLINGAME C A, et al. Parametric studies of the cylindrical hall thruster[R]. Williamsburg, US: the APS Division of Plasma Physics Meeting, 2000.
    [66] POLZIN K, RAITSES Y, GAYOSO J C, et al. Comparisons in performance of electromagnet and permanent-magnet cylindrical hall-effect thrusters[R]. Nashville, US: the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2010.
    [67] 康小录,张岩,刘佳,等. 大功率霍尔电推进研究现状与关键技术[J]. 推进技术,2019,40(1): 1-11. KANG Xiaolu,ZHANG Yan,LIU Jia,et al. Research status and key technologies of high-power Hall electric propulsion[J]. Journal of Propulsion Technology,2019,40(1): 1-11. (in Chinese
    [68] MATHERS A. Development of a high power cathode heater[R]. Hartford, US: the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2008.
    [69] 贾艳辉,张天平. 空间用六硼化镧空心阴极最新研究进展及发展趋势[J]. 真空科学与技术学报,2016,36(6): 690-698. JIA Yanhui,ZHANG Tianping. Latest development of space-borne lab6 hollow cathode[J]. Chinese Journal of Vacuum Science and Technology,2016,36(6): 690-698. (in Chinese
    [70] WARNER D, BRANAM R, HARGUS W, et al. Low current cerium hexaboride and lanthanum hexaboride hollow cathodes[R]. Reno, US: the 46th AIAA Aerospace Sciences Meeting and Exhibit, 2008.
    [71] GRUBISIC A, GABRIEL S. Preliminary thrust characterization of a T5 hollow cathode[R]. Cincinnati, US: the 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 2007.
    [72] PEDRINI D, TORRINI F, GRASSI J, et al. Development of hollow cathodes for 5 to 20 kW Hall thrusters[R]. Atlanta, US: the 35th International Electric Propulsion Conference, 2017.
    [73] SENGUPTA A,ANDERSON J A,GARNER C,et al. Deep space 1 flight spare ion thruster 30 000-hour life test[J]. Journal of Propulsion and Power,2009,25(1): 105-117. doi: 10.2514/1.36549
    [74] 郭宁,唐福俊,李文峰. 空间用空心阴极研究进展[J]. 推进技术,2012,33(1): 155-160. GUO Ning,TANG Fujun,LI Wenfeng. Advances in spaceborne hollow cathode[J]. Journal of Propulsion Technology,2012,33(1): 155-160. (in Chinese
    [75] 扈延林,毛威,李栋,等. 面向全电推进卫星的霍尔推进技术[J]. 空间控制技术与应用,2017,43(1): 73-78. HU Yanlin,MAO Wei,LI Dong,et al. The Hall propulsion technology oriented all-electric-propulsion satellites[J]. Journal of Propulsion Technology,2017,43(1): 73-78. (in Chinese
    [76] LINNELL J A. An evaluation of krypton propellant in hall thrusters[D]. Ann Arbor, Michigan: University of Michigan, 2007.
    [77] 张乾鹏,康小录. 用Xe 和Kr 作为霍尔电推进工质的比较[J]. 推进技术,2011,32(6): 828-834. ZHANG Qianpeng,KANG Xiaolu. Comparison for the hall thruster using Xe and Kr propellent[J]. Journal of Propulsion Technology,2011,32(6): 828-834. (in Chinese
    [78] SZELECKA A,KURZYNA J,BOURDAIN L. Thermal stability of the krypton Hall effect thruster[J]. Nukleonika,2017,62(1): 9-15. doi: 10.1515/nuka-2017-0002
    [79] 刘辉,牛翔,李鑫,等. 碘工质电推进技术研究综述[J]. 推进技术,2019,40(1): 12-25. LIU Hui,NIU Xiang,LI Xin,et al. Reviews on electrical propulsion technology using iodinealternatives[J]. Journal of Propulsion Technology,2019,40(1): 12-25. (in Chinese
    [80] MASON L, JANKOVSKY R, MANZELLA D. 1000 hours of testing on a 10 kilowatt Hall effect thruster[R]. Salt Lake City, US: the 37th Joint Propulsion Conference and Exhibit, 2001.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  373
  • HTML浏览量:  271
  • PDF量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-05
  • 网络出版日期:  2022-10-27

目录

    /

    返回文章
    返回