留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

风扇管道宽频噪声的声功率和远场指向性研究

许坤波 陈誉 仝帆 乔渭阳

许坤波, 陈誉, 仝帆, 等. 风扇管道宽频噪声的声功率和远场指向性研究[J]. 航空动力学报, 2023, 38(12):3031-3042 doi: 10.13224/j.cnki.jasp.20220015
引用本文: 许坤波, 陈誉, 仝帆, 等. 风扇管道宽频噪声的声功率和远场指向性研究[J]. 航空动力学报, 2023, 38(12):3031-3042 doi: 10.13224/j.cnki.jasp.20220015
XU Kunbo, CHEN Yu, TONG Fan, et al. Research on sound power and far-field directivity of fan ducted broadband noise[J]. Journal of Aerospace Power, 2023, 38(12):3031-3042 doi: 10.13224/j.cnki.jasp.20220015
Citation: XU Kunbo, CHEN Yu, TONG Fan, et al. Research on sound power and far-field directivity of fan ducted broadband noise[J]. Journal of Aerospace Power, 2023, 38(12):3031-3042 doi: 10.13224/j.cnki.jasp.20220015

风扇管道宽频噪声的声功率和远场指向性研究

doi: 10.13224/j.cnki.jasp.20220015
基金项目: 国家自然科学基金(12002150); 江苏省自然科学基金(BK20201041); 教育部人文社科基金(20YJCZH196);中国高等教育科学研究规划课题(22XX0415)
详细信息
    作者简介:

    许坤波(1988-),男,副教授、硕士生导师,博士,主要从事叶轮机械气动噪声研究。E-mail:kbxu@shmtu.edu.cn

  • 中图分类号: V231.3

Research on sound power and far-field directivity of fan ducted broadband noise

  • 摘要:

    针对风扇管道宽频噪声,利用两传声器模态分解方法对风扇宽频噪声模态分解、声功率测量以及远场辐射特性进行了研究,与需要较多数量的传声器阵列测量方法相比,这种优势在高频管道宽频噪声测量上尤为突出。本文针对该方法的有效性和准确性进行了数值研究,并基于轴流风扇试验台实验验证了该方法的精确性。该方法预测出的声功率与理论值完全吻合。风扇噪声实验结果表明两传声器方法在声功率方面有较高的准确性,最大误差为3 dB,其预测的远程辐射指向性在20°~60°范围内能较为准确地捕捉风扇进口端远场噪声辐射特征,但需要指出的是其预测精度对传声器间距非常敏感,小间距麦克风测量的相关性特征更加稳定,促使其预测精度比间距更大的结果更高。

     

  • 图 1  气流圆形管道示意图

    Figure 1.  Sketch of circular duct with flow

    图 2  相关系数幅值

    Figure 2.  Amplitude of correlation coefficients

    图 3  相关系数相位

    Figure 3.  Phase of correlation coefficients

    图 4  两传声器方法求解出的入射、反射波与理论值的对比

    Figure 4.  Comparison of analytical and inverted incident , reflected waves by two-microphone method

    图 5  风扇实验台及其远场阵列

    Figure 5.  Fan test rig and the far-field array

    图 6  模态幅值分布函数

    Figure 6.  Modal amplitude distribution function

    图 7  远场声功率计算值和测量值对比

    Figure 7.  Comparison of the calculated and measured far-field sound power

    图 8  远场1/3倍频程频谱计算值和测量值对比

    Figure 8.  Comparison of the calculated and measured far-field 1/3 octave band spectra

    图 9  $\Delta x = 0.03\;{\text{m}}$时两传声器方法预测的指向性

    Figure 9.  Directivity predicted by two-microphone method at $\Delta x = 0.03\;{\text{m}}$

    图 10  $\Delta x = 0.05\;{\text{m}}$时两传声器方法预测的指向性

    Figure 10.  Directivity predicted by two-microphone method at $\Delta x = 0.05\;{\text{m}}$

    图 11  $\Delta x = 0.07\;{\text{m}}$时两传声器方法预测的指向性

    Figure 11.  Directivity predicted by two-microphone method at $\Delta x = 0.07\;{\text{m}}$

    图 12  $\Delta x = 0.10\;{\text{m}}$时两传声器方法预测的指向性

    Figure 12.  Directivity predicted by two-microphone method at $\Delta x = 0.10\;{\text{m}}$

    图 13  4种传声器间距下的相关系数幅值频谱

    Figure 13.  Correlation coefficient magnitude at four spacings

    图 14  不同间距下相关系数的相位谱对比

    Figure 14.  Phase spectrum comparison of correlation coefficients at different spacings

  • [1] NALLASAMY M,SUTLIFF D L,HEIDELBERG L J. Propagation of spinning acoustic modes in turbofan exhaust ducts[J]. Journal of Propulsion and Power,2000,16(5): 736-743. doi: 10.2514/2.5654
    [2] ENGHARDT L, HOLEWA A, TAPKEN U. Comparison of different analysis techniques to decompose a broad-band ducted sound field in its mode constituents[R]. AIAA-2007-3520, 2007.
    [3] HUANG Xun. Compressive sensing and reconstruction in measurements with an aerospace application[J]. AIAA Journal,2013,51(4): 1011-1016. doi: 10.2514/1.J052227
    [4] HUANG Xun. Single-sensor identification of spinning mode noise from aircraft engine[J]. AIAA Journal,2012,50(3): 761-766. doi: 10.2514/1.J051508
    [5] 许坤波,乔渭阳,霍施宇,等. 基于旋转轴向阵列的风扇宽频噪声实验[J]. 航空学报,2017,38(11): 121132.1-121132.12.

    XU Kunbo,QIAO Weiyang,HUO Shiyu,et al. Experimental of fan broadband noise determination based on rotating axial arrays[J]. Acta Aeronautica et Astronautica Sinica,2017,38(11): 121132.1-121132.12. (in Chinese)
    [6] SIJTSMA P, ORSI H. Azimuthal and radial mode detection by a slowly rotating rake[R]. AIAA-2013-2244, 2013.
    [7] TADDEI F, DE LUCIA M, TORZO D, et al. A comparison between radial rakes of sensors and axial arrays of microphones for the experimental investigation of tone noise in LPTs[R]. AIAA-2013-2245, 2013.
    [8] CHUNG J Y. Cross-spectral method of measuring acoustic intensity without error caused by instrument phase mismatch[J]. The Journal of the Acoustical Society of America,1978,64(6): 1613-1616. doi: 10.1121/1.382145
    [9] MUNRO D H,INGARD K U. On acoustic intensity measurements in the presence of mean flow[J]. The Journal of the Acoustical Society of America,1979,65(6): 1402-1406. doi: 10.1121/1.382926
    [10] CHUNG J Y,BLASER D A. Transfer function method of measuring in-duct acoustic properties:Ⅰ theory[J]. The Journal of the Acoustical Society of America,1980,68(3): 907-913. doi: 10.1121/1.384778
    [11] CHUNG J Y,BLASER D A. Transfer function method of measuring in-duct acoustic properties:Ⅱ experiment[J]. The Journal of the Acoustical Society of America,1980,68(3): 914-921. doi: 10.1121/1.384779
    [12] MORFEY C L. Acoustic energy in non-uniform flows[J]. Journal of Sound and Vibration,1971,14(2): 159-170. doi: 10.1016/0022-460X(71)90381-6
    [13] CHUNG J Y,BLASER D A. Transfer function method of measuring acoustic intensity in a duct system with flow[J]. The Journal of the Acoustical Society of America,1980,68(6): 1570-1577. doi: 10.1121/1.385211
    [14] BODÉN H,ÅBOM M. Influence of errors on the two-microphone method for measuring acoustic properties in ducts[J]. The Journal of the Acoustical Society of America,1986,79(2): 541-549. doi: 10.1121/1.393542
    [15] ÅBOM M,BODÉN H. Error analysis of two-microphone measurements in ducts with flow[J]. The Journal of the Acoustical Society of America,1988,83(6): 2429-2438. doi: 10.1121/1.396322
    [16] 许坤波,乔渭阳,王良峰,等. 轴流风扇宽频噪声声功率实验研究[J]. 航空学报,2015,36(9): 2939-2946. doi: 10.7527/S1000-6893.2015.0080

    XU Kunbo,QIAO Weiyang,WANG Liangfeng,et al. Experimental research of broadband sound power determination in axial fan[J]. Acta Aeronautica et Astronautica Sinica,2015,36(9): 2939-2946. (in Chinese) doi: 10.7527/S1000-6893.2015.0080
    [17] JOSEPH P, MOURIES F, ENGHARDT L. A two-microphone method for the estimation of the mode amplitude distribution on multimode broadband sound field in finie-length ducts with uniform mean flow[R]. AIAA-2014-2915, 2014.
    [18] MELLING J,CHEN Jian,JOSEPH P. Experimental investigation of a new two-microphone method for the determination of broadband noise radiation from ducts[J]. Applied Acoustics,2017,117: 66-75. doi: 10.1016/j.apacoust.2016.10.025
    [19] SINAYOKO S,JOSEPH P,MCALPINE A. Multimode radiation from an unflanged, semi-infinite circular duct with uniform flow[J]. The Journal of the Acoustical Society of America,2010,127(4): 2159-2168. doi: 10.1121/1.3327814
    [20] 杨野,王良锋,洪少尊,等. 湍流参数对风扇宽频噪声预测影响[J]. 航空动力学报,2021,36(10): 2149-2156. doi: 10.13224/j.cnki.jasp.20200357

    YANG Ye,WANG Liangfeng,HONG Shaozun,et al. Influence of turbulent parameters on fan broadband noise prediction[J]. Journal of Aerospace Power,2021,36(10): 2149-2156. (in Chinese) doi: 10.13224/j.cnki.jasp.20200357
  • 加载中
图(14)
计量
  • 文章访问数:  147
  • HTML浏览量:  117
  • PDF量:  53
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-11
  • 网络出版日期:  2023-09-14

目录

    /

    返回文章
    返回