留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

动稳态畸变比例可变的插板装置DES数值研究

杨光 屠宝锋 方锐 张新雨 任智博 潘宝军

杨光, 屠宝锋, 方锐, 等. 动稳态畸变比例可变的插板装置DES数值研究[J]. 航空动力学报, 2023, 38(9):2261-2270 doi: 10.13224/j.cnki.jasp.20220021
引用本文: 杨光, 屠宝锋, 方锐, 等. 动稳态畸变比例可变的插板装置DES数值研究[J]. 航空动力学报, 2023, 38(9):2261-2270 doi: 10.13224/j.cnki.jasp.20220021
YANG Guang, TU Baofeng, FANG Rui, et al. Numerical study using DES for inserting plate with variable distortion ratio of dynamic to steady[J]. Journal of Aerospace Power, 2023, 38(9):2261-2270 doi: 10.13224/j.cnki.jasp.20220021
Citation: YANG Guang, TU Baofeng, FANG Rui, et al. Numerical study using DES for inserting plate with variable distortion ratio of dynamic to steady[J]. Journal of Aerospace Power, 2023, 38(9):2261-2270 doi: 10.13224/j.cnki.jasp.20220021

动稳态畸变比例可变的插板装置DES数值研究

doi: 10.13224/j.cnki.jasp.20220021
基金项目: 国家科技重大专项(J2019-I-0011-0011); 南京航空航天大学研究生科研与实践创新项目(xcxjh20210205)
详细信息
    作者简介:

    杨光(1994-),男,硕士生,主要从事航空发动机气动稳定性研究

    通讯作者:

    屠宝锋(1981-),男,副研究员,博士,主要从事航空发动机气动稳定性研究。E-mail:tubaofeng@nuaa.edu.cn

  • 中图分类号: V231.3

Numerical study using DES for inserting plate with variable distortion ratio of dynamic to steady

  • 摘要:

    针对常规可移动式插板产生的总压畸变稳态分量和动态分量比值较为固定,无法可调,不能真实反映不同进气条件下的复杂总压畸变的动稳态比例的现状,提出了一种改进型插板,采用对常规插板开孔和开齿等方法,通过不同的参数化设计,通过更换插板在发动机进口截面产生不同稳态畸变和动态畸变比值的总压畸变,采用分离涡模拟的方法对改进型插板进行了数值仿真,结果表明:在边缘开孔或开齿会改变插板后涡结构,但不会改变动稳态畸变比例。在插板上均匀开孔或开齿,既会改变板后涡结构,也会降低动稳态畸变比例,而且随着孔齿数量或尺寸的增加,分离区得到更多的射流能量,动稳态畸变比例降低。变齿数插板畸变比例可在0.14~0.50范围内变化。

     

  • 图 1  几何模型三维结构

    Figure 1.  Three-dimensional structure of geometric model

    图 2  某时刻下常规插板315 mm下涡结构

    Figure 2.  Vortex structure of normal plate in 315 mm at a certain time

    图 3  局部孔齿插板

    Figure 3.  Inserting plate with local holes and jags

    图 4  均匀孔齿插板

    Figure 4.  Inserting plate with uniform holes and jags

    图 5  网格无关性验证

    Figure 5.  Grid independence verification

    图 6  某时刻下边缘孔插板速度云图

    Figure 6.  Velocity contour of the inserting plate with marginal holes at a certain time

    图 7  边缘孔插板后总压云图

    Figure 7.  Total Pressure contour after the inserting plate with marginal holes

    图 8  某时刻下边缘齿插板涡结构

    Figure 8.  Vortex structure of the inserting plate with marginal jags at a certain time

    图 9  某时刻下常规插板涡结构

    Figure 9.  Vortex structure of the normal inserting plate at a certain time

    图 10  某时刻下边缘缝隙插板涡结构

    Figure 10.  Vortex structure of the inserting plate with marginal crack at a certain time

    图 11  某时刻下均匀孔插板涡结构

    Figure 11.  Vortex structure of the inserting plate with uniform holes at a certain time

    图 12  某时刻下整流罩前静压分布和速度矢量

    Figure 12.  Static pressure distribution and velocity vector before fairing at a certain time

    图 13  均匀孔插板畸变指数

    Figure 13.  Distortion index of the inserting plate with uniform holes

    图 14  均匀孔插板动稳态畸变比例

    Figure 14.  $\varepsilon /W$ of the inserting plate with uniform holes

    图 15  某时刻下均匀齿插板涡结构

    Figure 15.  Vortex structure of the inserting plate with uniform jags at a certain time

    图 16  某时刻下水平截面速度云图

    Figure 16.  Velocity contour of horizontal section at a certain time

    图 17  均匀齿插板畸变指数

    Figure 17.  Distortion index of the inserting plate with uniform jags

    图 18  均匀孔插板动态畸变指数云图

    Figure 18.  Dynamic distortion index of the inserting plate with uniform holes

    图 19  均匀齿插板动态畸变指数云图

    Figure 19.  Dynamic distortion index of the inserting plate with uniform jags

    图 20  均匀齿插板动稳态畸变比例

    Figure 20.  $ \varepsilon /W $ of the inserting plate with uniform jags

    图 21  所有插板的总结

    Figure 21.  Summary of all inserting plate

    图 22  变齿数插板

    Figure 22.  Inserting plate with mutable jags

    图 23  某点的总压变化

    Figure 23.  Variation of total pressure in a certain point

    表  1  边缘孔插板畸变比例

    Table  1.   Distortion rate of the inserting plate with marginal holes

    类型 $\Delta \overline{ {\mathrm{\sigma } }}_{\mathrm{o} }$/10−4$\varepsilon$/10−4$\varepsilon /W$
    常规插板7.298.250.53
    孔径为20 mm的插板7.447.770.51
    孔径为40 mm的插板7.597.380.49
    下载: 导出CSV

    表  2  边缘齿插板畸变比例

    Table  2.   Distortion rate of the inserting plate with marginal jags

    类型$\Delta \overline{ {\mathrm{\sigma } }}_{\mathrm{o} }$/10−4$ {\varepsilon } $ /10−4$ \varepsilon /W $
    常规插板7.298.250.53
    20 mm×20 mm方形齿插板7.197.810.52
    10 mm×40 mm方形齿插板7.27.880.52
    下载: 导出CSV

    表  3  边缘缝隙插板畸变比例

    Table  3.   Distortion rate of the inserting plate with marginal crack

    类型 $\Delta \overline{ {\mathrm{\sigma } }}_{\mathrm{o} }$/10−4$ \varepsilon $/10−4$ \varepsilon /W $
    常规插板7.298.250.53
    20 mm的边缘缝隙插板7.197.810.52
    下载: 导出CSV

    表  4  变齿数插板畸变比例

    Table  4.   Distortion rate of the inserting plate with mutable jags

    插板类型$\Delta \overline{ {\mathrm{\sigma } }}_{\mathrm{o} }$/10−4$ {\varepsilon } $ /10−4$ \varepsilon /W $
    1齿板7.017.20.50
    2齿板6.716.760.50
    7齿板7.194.980.41
    13齿板7.61.310.14
    下载: 导出CSV
  • [1] 中国航空工业第一集团公司. 航空涡轮喷气和涡轮风扇发动机进口总压畸变评定指南: GJB/Z64A-2004 [S]. 北京: 国防科工委军标出版发行部, 2004: 1-15.
    [2] 屠宝锋, 胡骏, 王英锋. 航空发动机气动稳定性评定流程和方法[M]. 北京: 北京航空航天大学出版社, 2021.
    [3] 程邦勤,陶增元,李军. 某型涡扇发动机进气总压畸变的试验研究[J]. 推进技术,2003,24(1): 21-23. doi: 10.3321/j.issn:1001-4055.2003.01.006

    CHENG Bangqin,TAO Zengyuan,LI Jun. Aerodynamic stability analysis of inlet pressure distortion for turbofan[J]. Journal of Propulsion Technology,2003,24(1): 21-23. (in Chinese) doi: 10.3321/j.issn:1001-4055.2003.01.006
    [4] 郑学伟,张百灵,江勇. 进气道插板式总压畸变试验的数值模拟[J]. 仿真技术,2009,25(1): 155-157.

    ZHENG Xuewei,ZHANG Bailing,JIANG Yong. Numerical simulation of total pressure distortion test of inlet insert plate[J]. Simulation Technology,2009,25(1): 155-157. (in Chinese)
    [5] 孙鹏,高海洋. 插板式畸变发生器后非均匀流场结构数值模拟[J]. 推进技术,2013,34(2): 173-180.

    SUN Peng,GAO Haiyang. Numerical simulation of non-uniform flow field structure behind plug-in plate distortion generator[J]. Journal of Propulsion Technology,2013,34(2): 173-180. (in Chinese)
    [6] 李文峰,马利东. 某涡扇发动机压力畸变评定技术[J]. 西北工业大学学报,2003,21(5): 540-543. doi: 10.3969/j.issn.1000-2758.2003.05.008

    LI Wenfeng,MA Lidong. Pressure distortion assessment technique for a turbofan engine[J]. Journal of Northwestern Polytechnical University,2003,21(5): 540-543. (in Chinese) doi: 10.3969/j.issn.1000-2758.2003.05.008
    [7] 李亮, 胡骏. 插板到压气机进口距离对压气机稳定性影响的实验研究[R]. 贵州: 中国航空学会第7届动力年会, 2010.
    [8] 李亮,胡骏. 多种形式插板的压气机进气总压畸变实验[J]. 航空动力学报,2009,24(4): 925-930.

    LI Liang,HU Jun. Experimental study of the inlet total-pressure distortion on four kinds of the interceptors[J]. Journal of Aerospace Power,2009,24(4): 925-930. (in Chinese)
    [9] 李亮. 进口总压畸变稳定性评定方法研究[D]. 南京: 南京航空航天大学, 2008.

    LI Liang. Stability assessment study of a compressor inlet total-pressure-distortion[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008. (in Chinese)
    [10] 罗标能. 压气机进口插板总压畸变稳定性研究[D]. 南京: 南京航空航天大学, 2006.

    LUO Biaoneng. Study on total pressure distortion stability of compressor inlet insert plate[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2006. (in Chinese)
    [11] 李名魁,张发启. 插板式畸变发生器出口动态压力信号的功率谱分析[J]. 燃气涡轮试验与研究,2002,15(4): 17-20. doi: 10.3969/j.issn.1672-2620.2002.04.004

    LI Mingkui,ZHANG Faqi,WANG Rugen. Power spectrum analysis of dynamic pressure signal by inlet flat baffle[J]. Gas Turbine Test and Research,2002,15(4): 17-20. (in Chinese) doi: 10.3969/j.issn.1672-2620.2002.04.004
    [12] 程邦勤,陶增元,李军. 某型涡扇发动机进气畸变压力脉动分析[J]. 航空动力学报,2003,18(1): 197-201.

    CHENG Bangqin,TAO Zengyuan,LI Jun. Pulsatile analysis of inlet pressure distortion in turbofan engine[J]. Journal of Aerospace Power,2003,18(1): 197-201. (in Chinese)
    [13] 甘甜,王如根,张杰,等. 不同湍流模型对插板式进气畸变的数值模拟[J]. 推进技术,2014,25(7): 891-896.

    GAN Tian,WANG Rugen,ZHANG Jie,et al. Numerical simulation of inlet distortion with interceptor with different turbulence models[J]. Journal of Propulsion Technology,2014,25(7): 891-896. (in Chinese)
    [14] 刘阳, 陈杰, 黄国平. 管道内插板后流动结构分析[R]. 广东 深圳: 第11届全国流体力学学术会议论文摘要集, 2020.
    [15] MENTER F R, KUNTZ M. Development and application of a zonal DES turbulence model for CFX-5[R]. CFX-VAL17/0703, 2003.
    [16] SPALART P R, JOU W, STRELETS M, et al. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach[R]. Ruston, US: Louisiana Tech University, 1997.
    [17] DAVIDSON L. Fluid mechanics, turbulent flow and turbulence modeling[EB/OL]. [2022-01-10]. http://www.tf- d.chalmers.se/˜lada.
    [18] MENTER F R. Best practice: scale-resolving simulations in ANSYS CFD [EB/OL]. [2022-01-11]. https://www.ansys.com/resource-center/technical-paper/best-practice-scale-resolving-simulations-in-ansys-cfd.
    [19] GERASIMOV A. Quick guide to setting up LES type simulations[EB/OL]. [2022-01-11]. https://www.tfd.chalmers.se/~lada/comp_turb_model/postscript_files/Quick_Guide_to_Setting_Up_LES_version_1.4_for_Lars.pdf.
    [20] ANSYS Corporation. CFX users manual[R]. Canonsburg, US: ANSYS Corporation, 2021.
    [21] HUNT J, WRAY A, MOIN P. Eddies, streams and convergence zones in turbulent flows[R]. San Francisco, US: Centre for Turbulence Research Proceedings of the Summer Program, 1988.
    [22] 刘超群. Liutex-涡定义和第三代涡识别方法[J]. 空气动力学报,2020,38(3): 413-478.

    LIU Chaoqun. Liutex-third generation of vortex definition and identification methods[J]. Acta Aerodynamica Sinaca,2020,38(3): 413-478. (in Chinese)
  • 加载中
图(23) / 表(4)
计量
  • 文章访问数:  126
  • HTML浏览量:  32
  • PDF量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-14
  • 网络出版日期:  2022-09-21

目录

    /

    返回文章
    返回