Active disturbance rejection control method of auxiliary power unit
-
摘要:
辅助动力装置常被抽取轴功率、空气质量流量用于发电、引气,为降低该过程对涡轮发动机造成的干扰,提升原控制系统的抗扰性能,研究了自抗扰控制方法及其参数化设计方法,以便在工程应用中能够根据线性化模型设计相应的控制参数,并在某型辅助动力装置模型上开展基于传统的增益调度PI控制方法与自抗扰控制方法的数值仿真验证。结果表明:自抗扰控制在保持与PI控制基本性能相似的前提下,具有更优的抗发电和引气干扰的能力,在干扰出现时能够更快速地恢复至原工作状态,转速波动量减少了35%,转速调节时间缩短了9%,具有良好的实际工程应用潜力。
Abstract:The auxiliary power unit is often used to extract shaft power and air flow for power generation and bleed. In order to reduce the interference caused by this process to the turbine engine and improve the anti-interference performance of the original control system, the active disturbance rejection control method and its parametric design method were studied, so as to design the corresponding control parameters according to the linearization model in engineering applications, and numerical simulation of a factory model based on the traditional gain scheduling PI control method and active disturbance rejection control (ADRC) method was conducted. Results showed that, on the premise of keeping the basic performance similar to that of PI control, ADRC had good anti-power generation interference and air entrainment interference performance, and can recover to the original working state faster when the interference occurred. More specifically, the speed fluctuation of ADRC was reduced by 35%, and the speed adjustment time was shortened by 9%, revealing the superior potential for practical engineering applications.
-
-
[1] 林坤. 从三种机型APU的对比讨论其未来的发展趋势[J]. 大众科技,2013,15(1): 53-54.LIN Kun. Discuss future trends of APU from the comparison of three models APU[J]. Popular Science & Technology,2013,15(1): 53-54. (in Chinese) [2] 张莹. 辅助动力装置全权限数字电子控制技术研究[D]. 南京: 南京航空航天大学, 2007.ZHANG Ying. Research on full authority digital electronic control system of the auxiliary power unit[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007. (in Chinese) [3] 李东杰. 辅助动力装置的应用现状和发展趋势[J]. 航空科学技术,2012,23(6): 7-10.LI Dongjie. Application status and development trend of auxiliary power unit[J]. Aeronautical Science & Technology,2012,23(6): 7-10. (in Chinese) [4] 徐建,杨刚,胡文霏. 根轨迹法在燃油控制回路PI控制器参数设计中的应用[J]. 航空发动机,2016,42(4): 17-20.XU Jian,YANG Gang,HU Wenfei. Research on applying root locus to parameter design of fuel control loop PI controller[J]. Aeroengine,2016,42(4): 17-20. (in Chinese) [5] ZILOUCHIAN A,JULIANO M,HEALY T,et al. Design of a fuzzy logic controller for a jet engine fuel system[J]. Control Engineering Practice,2000,8(8): 873-883. doi: 10.1016/S0967-0661(00)00019-8 [6] 仇小杰,林星辰,王全胜,等. 1种弹用发动机控制系统高空转速超调控制技术应用研究[J]. 航空发动机,2018,44(3): 31-35.QIU Xiaojie,LIN Xingchen,WANG Quansheng,et al. Research of speed overshoot control technology in high altitude for missile engine control systems[J]. Aeroengine,2018,44(3): 31-35. (in Chinese) [7] WANG C,LI Y G,YANG B Y. Transient performance simulation of aircraft engine integrated with fuel and control systems[J]. Applied Thermal Engineering,2017,114: 1029-1037. doi: 10.1016/j.applthermaleng.2016.12.036 [8] TSOUTSANIS E,MESKIN N. Performance assessment of classical and fractional controllers for transient operation of gas turbine engines[J]. IFAC-PapersOnLine,2018,51(4): 687-692. doi: 10.1016/j.ifacol.2018.06.182 [9] CUI Tao. Simplified procedure for controlling pressure distribution of a scramjet combustor[J]. Chinese Journal of Aeronautics,2014,27(5): 1137-1141. doi: 10.1016/j.cja.2014.08.015 [10] 姚华. 航空发动机全权限数字电子控制系统[M]. 北京: 航空工业出版社, 2014. [11] 韩京清. 自抗扰控制器及其应用[J]. 控制与决策,1998,13(1): 19-23.HAN Jingqing. Auto-disturbances-rejection controller and its applications[J]. Control and Decision,1998,13(1): 19-23. (in Chinese) [12] 韩京清. 自抗扰控制技术: 估计补偿不确定因素的控制技术[M]. 北京: 国防工业出版社, 2008. [13] 孙莉,李东海,胡康涛,等. 自抗扰控制器的整定和实际实现: 以1 000 MW发电厂蓄热式加热器为例[J]. 工业与工程化学研究,2016,55(23): 6686-6695. doi: 10.1021/acs.iecr.6b01249SUN Li,LI Donghai,HU Kangtao,et al. On tuning and practical implementation of active disturbance rejection controller: a case study from a regenerative heater in a 1 000 MW power plant[J]. Industrial and engineering chemistry research,2016,55(23): 6686-6695. (in Chinese) doi: 10.1021/acs.iecr.6b01249 [14] 谢辉,黄雪峰. 低温燃烧汽油机瞬态空燃比主动抗扰控制[J]. 天津大学学报(自然科学与工程技术版),2016,49(2): 198-205.XIE Hui,HUANG Xuefeng. Transient air-fuel ratio active disturbance rejection control of low-temperature combustion gasoline engine[J]. Journal of Tianjin University (Natural Science and Engineering Technology Edition),2016,49(2): 198-205. (in Chinese) [15] 赵申, 高志强. 非最小相位系统的自抗扰控制[R]. 北京: 第29届中国控制会议, 2010.ZHAO Shen, GAO Zhiqiang. Active disturbance rejection control for non-minimum phase systems[R]. Beijing: 29th Chinese Control Conference, 2010. (in Chinese) [16] 仇小杰,张宇飞,文彬鹤. 辅助动力装置控制系统传感器智能解析余度方法[J]. 航空动力学报,2021,36(6): 1177-1187.QIU Xiaojie,ZHANG Yufei,WEN Binhe. Intelligent analytical redundancy method of control system sensors based on APU[J]. Journal of Aerospace Power,2021,36(6): 1177-1187. (in Chinese) [17] 馬强,田宏星. 战斗机用辅助动力装置的发展[J]. 航空动力,2019(2): 20-22.MA Qiang,TIAN Hongxing. The development of APUs for fighters[J]. Aerospace Power,2019(2): 20-22. (in Chinese) [18] 王俊琦,赵海刚,张媛. 辅助动力装置的稳态和过渡态特特性性试试飞[J]. 航空科学技术,2020,31(9): 41-46.WANG Junqi,ZHAO Haigang,ZHANG Yuan. Flight test of steady and transient characteristics of APU[J]. Aeronautical Science & Technology,2020,31(9): 41-46. (in Chinese)