留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于响应曲面法的成型CBN砂轮高频感应钎焊温度均匀性研究

李奇林 王西超 丁凯 雷卫宁 陈佳佳

李奇林,王西超,丁凯,等.基于响应曲面法的成型CBN砂轮高频感应钎焊温度均匀性研究[J].航空动力学报,2022,37(9):1915‑1922. doi: 10.13224/j.cnki.jasp.20220041
引用本文: 李奇林,王西超,丁凯,等.基于响应曲面法的成型CBN砂轮高频感应钎焊温度均匀性研究[J].航空动力学报,2022,37(9):1915‑1922. doi: 10.13224/j.cnki.jasp.20220041
LI Qilin,WANG Xichao,DING Kai,et al.Investigation of temperature uniformity of profiled CBN grinding wheel under high frequency induction brazing based on response surface methodology[J].Journal of Aerospace Power,2022,37(9):1915‑1922. doi: 10.13224/j.cnki.jasp.20220041
Citation: LI Qilin,WANG Xichao,DING Kai,et al.Investigation of temperature uniformity of profiled CBN grinding wheel under high frequency induction brazing based on response surface methodology[J].Journal of Aerospace Power,2022,37(9):1915‑1922. doi: 10.13224/j.cnki.jasp.20220041

基于响应曲面法的成型CBN砂轮高频感应钎焊温度均匀性研究

doi: 10.13224/j.cnki.jasp.20220041
基金项目: 

国家自然科学基金 51905234

详细信息
    作者简介:

    李奇林(1984-),男,副教授、硕士生导师,博士,主要从事超硬磨料砂轮钎焊技术研究。

    通讯作者:

    王西超(1982-),男,讲师、硕士生导师,博士,主要从事人工智能与数学建模研究。E‑mail:wangxc@sdju.edu.cn

  • 中图分类号: V263.1

Investigation of temperature uniformity of profiled CBN grinding wheel under high frequency induction brazing based on response surface methodology

  • 摘要:

    成型砂轮在高频感应钎焊过程中存在温度分布不均匀导致钎焊质量无法满足使用要求,这是长期困扰超硬磨料砂轮高频感应钎焊技术的难题。针对该问题,提出温度均匀性的表征方法,以温度均匀度和平均温度为响应值,基于有限元仿真数据获得了响应曲面法模型。基于该模型,采用方差分析成型砂轮感应钎焊温度均匀性的影响因素显著程度由大到小依次为加热间隙、感应电流、导磁体长度。以平均温度值和温度均匀度为优化目标,基于响应曲面法优化线圈结构和工艺参数,开展了感应加热试验,证明响应曲面法模型优化结果的误差在6.94%以内。高频感应钎焊的成型立方氮化硼(cubic boron nitride,CBN)砂轮宏观形貌显示,钎料在成型面各处铺展的一致性好,表明钎焊过程中在成型面的温度分布具有较好的均匀性。

     

  • 图 1  燕尾槽成型砂轮基体尺寸示意图(单位:mm)

    Figure 1.  Geometry scheme of dovetail slot profiled grinding wheel matrix (unit:mm)

    图 3  成型面温度分析路径

    Figure 3.  Measured path for profiled surface temperature analysis

    图 4  感应电流和加热间隙对平均温度的交互作用

    Figure 4.  Interaction effect of induction current and heating gap on average temperature

    图 6  导磁体对温度场的影响

    Figure 6.  Effect of magnetizer on temperature field

    表  1  响应曲面法各因素与水平

    Table  1.   Factor and level values of RSM

    水平因素
    电流I/A导磁体长度L/mm加热间隙h/mm
    -18011
    01203.63
    11606.25
    下载: 导出CSV

    表  2  各因素设计方案与仿真结果

    Table  2.   Design and simulation results of each factors

    序号I/AL/mmh/mmT¯/°CU/%
    18013226.84794.02
    21206.25450.890.18
    31201535091.57
    41603.65584.693.24
    51203.63538.896.61
    61606.23829.590.84
    7120111 406.481.56
    81206.211 359.682.27
    9803.6185193.35
    10803.65227.696.02
    11806.23238.394.65
    1216013806.185.52
    131603.612 124.180.71
    下载: 导出CSV

    表  3  平均温度的ANOVA结果

    Table  3.   ANOVA results of average temperature

    项目平方和自由度均方差FP
    模型3.95×10657.91×105200.84<0.000 1
    I9.80×10519.80×105248.99<0.000 1
    L986.861986.860.250 60.626 5
    h2.13×10612.13×106540.99<0.000 1
    Ih2.10×10512.10×10553.29<0.000 1
    h²6.33×10516.33×105160.69<0.000 1
    残差43 312.39113 937.49
    失拟43 312.3976 187.48
    纯误差040
    总计4.00×10616R²=0.982 9Radj²=0.984 2
    下载: 导出CSV

    表  4  温度均匀度的ANOVA结果

    Table  4.   ANOVA results of temperature uniformity

    项目平方和自由度均方差FP
    模型497.462 9771.06695.951<0.000 1
    I110.038 61110.038148.57<0.000 1
    L3.591 213.5914.8480.055 1
    h137.6971137.697185.914<0.000 1
    IL4.730 614.736.3870.032 3
    Ih24.900 1124.933.6190.000 26
    L²93.797193.797126.641<0.000 1
    h²110.717 11110.717149.486<0.000 1
    残差6.665 890.741
    失拟6.665 851.333
    纯误差040
    总计504.128 816R²=0.986 8Radj²=0.976 5
    下载: 导出CSV
  • [1] 丁文锋,奚欣欣,占京华,等.航空发动机钛材料磨削技术研究现状及展望[J].航空学报,2019,40(6):6⁃41.

    DING Wenfeng,XI Xinxin,ZHAN Jinghua,et al.Research status and future development of grinding technology of titanium materials for aero⁃engines[J].Acta Aeronauticaet Astronautica Sinica,2019,40(6):6⁃41.(in Chinese)
    [2] XIAO Haozhong,XIAO Bing,WU Hengheng,et al.Microstructure and mechanical properties of vacuum brazed CBN abrasive segments with tungsten carbide reinforced Cu⁃Sn⁃Ti alloys[J].Ceramics International,2019,45(9):12469⁃12475.
    [3] SIMHAN D R,GHOSH A.Vacuum brazing of cubic boron nitride to medium carbon steel with Zr added passive and Ti activated eutectic Ag⁃Cu alloys[J].Ceramics International,2018,44(5):4891⁃4899.
    [4] 卢金斌,穆云超,孟普.钛基钎料真空钎焊立方氮化硼的分析[J].焊接学报,2010,31(5):57⁃60.

    LU Jinbin,MU Yunchao,MENG Pu.Analysis on vacuum brazing of CBN with Ti⁃base filler[J].Transactions of the China Welding Institution,2010,31(5):57⁃60.(in Chinese)
    [5] 任慧中,李奇林,雷卫宁,等.感应钎焊温度对CBN砂轮磨削性能的影响[J].中国机械工程,2018,29(7):829⁃834.

    REN Huizhong,LI Qilin,LEI Weining,et al.Effects of induction brazing temperature on grinding performances of CBN grinding wheels[J].China Mechanical Engineering,2018,29(7):829⁃834.(in Chinese)
    [6] ROMMEL D,SCHERM F,KUTTNER C,et al.Laser cladding of diamond tools:interfacial reactions of diamond and molten metal[J].Surface and Coatings Technology,2016,291:62⁃69.
    [7] CHEN Jiajia,FU Yucan,LI Qilin,et al.Investigation on induction brazing of revolving heat pipe grinding wheel[J].Materials and Design,2017,116:21⁃30.
    [8] VALERY R,DON L,RAYMOND C,et al.Handbook of induction heat[M].New York,US:Marcel Dekker Incorporated,2003.
    [9] BARKA N,CHEBAK A,OUAFI A E,et al.A new approach in optimizing the induction heating process using flux concentrators:application to 4340 steel spur gear[J].Journal of Materials Engineering and Performance,2014,23(9):3092⁃3099.
    [10] GAO Kai,QIN Xunpeng,WANG Zhou,et al.Effect of magnetizer geometry on the spot induction heating process[J].Journal of Materials Processing Technology,2016,231:125‑136.
    [11] 童欣,苏宏华,徐九华,等.成形砂轮超高频感应加热温度分布均匀性分析[J],焊接学报,2015,36(2):51⁃54.

    TONG Xin,SU Honghua,XU Jiuhua,et al.Uniformity of ultra⁃high frequency induction heating temperature distribution of grinding wheel[J].Transactions of the China Welding Institution,2015,36(2):51⁃54.(in Chinese)
    [12] MONTGOMERY D C.Design and analysis of experiments[M].New York,US:John Wiley,1984.
    [13] 邵佳丰,罗晨,周怡君,等.基于自由变形技术的分流叶片形状优化设计[J].航空动力学报,2021,36(6):1315⁃1323.

    SHAO Jiafeng,LUO Chen,ZHOU Yijun,et al.Optimization design of splitter blade shape based on free form deformation technology[J].Journal of Aerospace Power,2021,36(6):1315⁃1323.(in Chinese)
    [14] 李峰,李学崑,朱天行,等.基于响应曲面法的强化感应加热数值仿真[J].清华大学学报(自然科学版),2013,53(4):469⁃475.

    LI Feng,LI Xuekun,ZHU Tianxing,et al.Numerical simulations of strengthen induction heating with response surface methodology[J].Journal of Tsinghua University (Science and Technology),2013,53(4):469⁃475.(in Chinese)
    [15] KHALIFA M,BARKA N,BROUSSEAU J,et al.Reduction of edge effect using response surface methodology and artificial neural network modeling of a spur gear treated by induction with flux concentrators[J].International Journal of Advanced Manufacturing Technology,2019,104(1/2/3/4):103⁃117.
    [16] LI Qilin,XU Jiuhua,SU Honghua.Simulation of temperature field in ultra⁃high frequency induction heating and verification[J].Transactions of Nanjing University of Aeronautics and Astronautics,2013,30(2):155⁃161.
    [17] JIANG Zhaoneng,HUANG Shichun,WANG Zhixin,et al.Efficient analysis of coated object using fast algorithm with surface impedance boundary condition[J].International Journal of Applied Electromagnetics and Mechanics,2020,63(3):521⁃528.
    [18] FERROUILLAT P,GUERIN C,MEUNIER G,et al.Computations of source for non⁃meshed coils with A⁃V formulation using edge elements[J].IEEE Transactions on Magnetics,2015,51(3):1⁃4.
    [19] SHIH S,NIAN S,HUANG M,et al.Nonplanar mold surface heating using external inductive coil and magnetic shielding materials[J].International Communications in Heat and Mass Transfer,2016,71:44⁃55.
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  82
  • HTML浏览量:  31
  • PDF量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-23

目录

    /

    返回文章
    返回