留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于三维体积力模型的离心压气机喘振预测方法

曾翰轩 范腾博 温孟阳 魏杰 王钧莹 孙振中 郑新前

曾翰轩, 范腾博, 温孟阳, 等. 基于三维体积力模型的离心压气机喘振预测方法[J]. 航空动力学报, 2024, 39(2):20220047 doi: 10.13224/j.cnki.jasp.20220047
引用本文: 曾翰轩, 范腾博, 温孟阳, 等. 基于三维体积力模型的离心压气机喘振预测方法[J]. 航空动力学报, 2024, 39(2):20220047 doi: 10.13224/j.cnki.jasp.20220047
ZENG Hanxuan, FAN Tengbo, WEN Mengyang, et al. Surge prediction of radial compressors based on three-dimensional body-force method[J]. Journal of Aerospace Power, 2024, 39(2):20220047 doi: 10.13224/j.cnki.jasp.20220047
Citation: ZENG Hanxuan, FAN Tengbo, WEN Mengyang, et al. Surge prediction of radial compressors based on three-dimensional body-force method[J]. Journal of Aerospace Power, 2024, 39(2):20220047 doi: 10.13224/j.cnki.jasp.20220047

基于三维体积力模型的离心压气机喘振预测方法

doi: 10.13224/j.cnki.jasp.20220047
基金项目: 国家科技重大专项(2017-Ⅱ-0004-0016,J2019-Ⅰ-0011)
详细信息
    作者简介:

    曾翰轩(1994-),男,博士生,主要从事航空发动机气动稳定性研究

    通讯作者:

    郑新前(1977-),男,教授、博士生导师,博士,主要从事航空发动机气动热力学研究。E-mail:zhengxq@tsinghua.edu.cn

  • 中图分类号: V231

Surge prediction of radial compressors based on three-dimensional body-force method

  • 摘要:

    为了实现对喘振流动现象的准确、快速预测,提出了一种基于三维体积力模型的离心压气机喘振预测方法,并在一款跨声速离心压气机上进行了应用,对以叶轮进口叶尖“回流泡”、喘振中的旋转失速,以及蜗壳诱发的非对称流动为代表的典型喘振流场结构进行了捕捉。通过与经试验校核的全三维非定常雷诺平均Navier-Stokes(URANS)方法进行对比表明:本文提出的离心压气机喘振预测方法,针对主要喘振流动特征的预测具备与全三维URANS方法相当的能力,同时计算时间约为全三维URANS方法的1/20。

     

  • 图 1  后弯叶轮出口的滑移效应

    Figure 1.  Slip effect at the outlet of a back-sweep impeller

    图 2  压缩系统示意图

    Figure 2.  Sketch of the compression system

    图 3  试验压气机实物图[16]

    Figure 3.  Tested compressor geometry[16]

    图 4  体积力模型计算域及计算网格

    Figure 4.  Computational domain and mesh for the BDF model

    图 5  URANS模型计算域及计算网格

    Figure 5.  Computational domain and mesh for the UNRANS model

    图 6  网格无关性验证

    Figure 6.  Mesh independence validation

    图 7  BDF模型与URANS模型预测喘振特性对比

    Figure 7.  Comparison of the predicted surge characteristics between BDF model and URANS model

    图 8  喘振过程中压气机各截面静压变化对比

    Figure 8.  Comparison of the static pressure at several compressor stations during surge

    图 9  流动崩溃阶段压气机瞬时轴向速度云图(对应时刻见图7

    Figure 9.  Compressor axial velocity contour during the flow reversal (corresponding time is shown in Fig.7

    图 10  喘振过程中压气机瞬时马赫数云图(50%扩压器叶高截面,对应时刻见图7

    Figure 10.  Mach number contour during surge (50% diffuser blade span, corresponding time is shown in Fig.7

    图 11  失速团的周向迁移(P1和P2位置见图10

    Figure 11.  Circumferential migration of the stall cell (the locations of P1 and P2 are shown in Fig.10

    图 12  重新增压阶段压气机瞬时马赫数云图(50%扩压器叶高截面,对应时刻见图8

    Figure 12.  Mach number contour during the repressurization stage (50% diffuser blade span, corresponding time is shown in Fig.8

    表  1  压气机无量纲参数

    Table  1.   Compressor design parameters

    参数符号数值
    叶轮周期数$ {Z_{\text{i}}} $16
    进口轮毂比$ R $0.63
    扩压器周期数$ {Z_{\text{d}}} $16
    扩压器进口半径比${r_3}/{r_2}$1.18
    扩压器出口半径比${r_4}/{r_2}$1.44
    叶轮叶尖马赫数$ M{a_{\text{u}}} $1.4
    流量系数$ \phi $0.04
    压升系数$ \psi $0.47
    比转速$ {N_{\text{s}}} $0.70
    B参数$ B $1.22
    下载: 导出CSV

    表  2  URANS模型网格参数

    Table  2.   Mesh specifications for URANS model

    参数数值
    网格1网格2
    进口段流向膨胀比1.051.05
    叶轮径向网格层数5063
    叶轮流向网格层数100120
    叶轮周向网格层数(单通道)1616
    叶轮间隙网格层数1721
    扩压器径向网格层数5063
    扩压器流向网格层数5064
    扩压器周向网格层数(单通道)3548
    总网格数/万7461539
    下载: 导出CSV

    表  3  BDF网格参数

    Table  3.   Mesh specifications for BDF model

    参数数值
    网格1网格2
    径向网格层数1521
    周向网格层数100140
    进口段流向网格层数5070
    叶轮流向网格层数3040
    连接段流向网格层数810
    扩压器流向网格层数2330
    总网格数/万2252
    下载: 导出CSV
  • [1] 赵阳,王志恒,席光. 离心压缩机喘振动态特性的数值研究[J]. 工程热物理学报,2019,40(10): 2252-2258.

    ZHAO Yang,WANG Zhiheng,XI Guang. Numerical investigation of dynamic characteristic of surge in a centrifugal compressor[J]. Journal of Engineering Thermophysics,2019,40(10): 2252-2258. (in Chinese)
    [2] 郭强,竺晓程,杜朝辉,等. 带气腔的离心压缩机旋转失速的三维数值模拟[J]. 航空动力学报,2007,22(7): 1167-1172. doi: 10.13224/j.cnki.jasp.2007.07.024

    GUO Qiang,ZHU Xiaocheng,DU Zhaohui,et al. Three-dimensional numerical simulation of rotating stall inside a centrifugal compressor with plenum model[J]. Journal of Aerospace Power,2007,22(7): 1167-1172. (in Chinese) doi: 10.13224/j.cnki.jasp.2007.07.024
    [3] YAMADA K, FURUKAWA M, ARAI H, et al. Evolution of reverse flow in a transonic centrifugal compressor at near-surge[R]. ASME GT2017-63568, 2017.
    [4] SHAHIN I,GADALA M,ALQARADAWI M,et al. Large eddy simulation for a deep surge cycle in a high-speed centrifugal compressor with vaned diffuser[J]. Journal of Turbomachinery,2015,137(10): 101007. doi: 10.1115/1.4030790
    [5] TREBINJAC I,BENICHOU E,BUFFAZ N. Full-annulus simulation of the surge inception in a transonic centrifugal compressor[J]. Journal of Thermal Science,2015,24(5): 442-451. doi: 10.1007/s11630-015-0807-x
    [6] GONG Y,TAN C S,GORDON K A,et al. A computational model for short-wavelength stall inception and development in multistage compressors[J]. Journal of Turbomachinery,1999,121(4): 726-734. doi: 10.1115/1.2836726
    [7] CHIMA R V. A three-dimensional unsteady CFD model of compressor stability[R]. ASME GT2006-90040, 2006.
    [8] 郑宁,邹正平,徐力平. 风扇进气畸变三维非定常数值模拟技术研究[J]. 航空动力学报,2007,22(1): 60-65. doi: 10.3969/j.issn.1000-8055.2007.01.011

    ZHENG Ning,ZOU Zhengping,XU Liping. 3-D unsteady numerical simulation of fan/compressor with inlet distortion[J]. Journal of Aerospace Power,2007,22(1): 60-65. (in Chinese) doi: 10.3969/j.issn.1000-8055.2007.01.011
    [9] ZENG Hanxuan,ZHENG Xinqian,VAHDATI M. A method of stall and surge prediction in axial compressors based on three-dimensional body-force model[J]. Journal of Engineering for Gas Turbines and Power,2022,144(3): 031021. doi: 10.1115/1.4053103
    [10] QIU X W, MALLIKARACHCHI C, ANDERSON M. A new slip factor model for axial and radial impellers[R]. ASME GT2007-27064, 2007.
    [11] GREITZER E M. Surge and rotating stall in axial flow compressors: Part Ⅰ theoretical compression system model[J]. Journal of Engineering for Power,1976,98(2): 190-198. doi: 10.1115/1.3446138
    [12] GREITZER E M. Surge and rotating stall in axial flow compressors: Part Ⅱ experimental results and comparison with theory[J]. Journal of Engineering for Power,1976,98(2): 199-211. doi: 10.1115/1.3446139
    [13] HUANG Qiangqiang,ZHANG Meijie,ZHENG Xinqian. Compressor surge based on a 1D-3D coupled method: Part 1 method establishment[J]. Aerospace Science and Technology,2019,90: 342-356. doi: 10.1016/j.ast.2019.04.040
    [14] DUMAS M, VO H D, YU H. Post-surge load prediction for multi-stage compressors via CFD simulations[R]. ASME GT2015-42748, 2015.
    [15] LIN Yun,FAN Tengbo,ZHENG Xinqian. Roles of recirculating bubble on the performance of centrifugal compressors[J]. Aerospace Science and Technology,2021,118: 107073. doi: 10.1016/j.ast.2021.107073
    [16] ZHENG Xinqian,SUN Zhenzhong,KAWAKUBO T,et al. Experimental investigation of surge and stall in a turbocharger centrifugal compressor with a vaned diffuser[J]. Experimental Thermal and Fluid Science,2017,82: 493-506. doi: 10.1016/j.expthermflusci.2016.11.036
    [17] MORENO J,DODDS J,SHEAF C,et al. Aerodynamic loading considerations of three-shaft engine compression system during surge[J]. Journal of Turbomachinery,2021,143(12): 121002. doi: 10.1115/1.4051207
    [18] EVERITT J N,SPAKOVSZKY Z S. An investigation of stall inception in centrifugal compressor vaned diffuser1[J]. Journal of Turbomachinery,2013,135(1): 011025. doi: 10.1115/1.4006533
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  152
  • HTML浏览量:  64
  • PDF量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-25
  • 网络出版日期:  2023-10-16

目录

    /

    返回文章
    返回