Analysis on 3D full flow field in a cooling channel with diamond pin fins based on MRV
-
摘要:
在研究核磁共振成像测速(MRV)技术测速核心方法的基础上,成功实现了在10 min内对大宽高比肋柱通道200×100×25个空间点上三维全场速度的测量,并对流场结构进行了深入的解析。将MRV测得的通道中心截面速度分布与粒子成像测速(PIV)的实验结果进行了对比,两者吻合良好。利用MRV测得的空间三维速度分布解析了菱形肋柱与端壁附近复杂的三维流场与涡量场,发现端壁附近流体靠近肋柱时,先向下冲击端壁,仅在肋柱前缘两侧形成马蹄涡,随后绕过肋柱两侧尖角处向上抬升,端壁边界层内的涡,迅速演变为肋柱两侧尖角附近以及下游的剪切层涡。
Abstract:Based on the study of core method of magnetic resonance imaging velocimetry (MRV), the 3D velocity field of 200×100×25 spatial points in a large aspect ratio channel with pin fins was obtained in 10 min successfully, and the flow field was resolved deeply. The velocity distribution in the mid-plane of channel measured by MRV was compared with the experimental results of particle imaging velocimetry (PIV), which were in good agreement. The 3D velocity distribution measured by MRV presented the complex 3D flow field and vorticity field distribution around diamond pin fin and end wall. It was found that when the fluid near the end wall approached to pin fin, it impinged the end wall firstly and horseshoe vortex only occurred on both sides of the leading point. Then fluid climbs up around the sharp corners on both sides of the pin fin, and the vortex in the end wall boundary layer rapidly evolved into shear layer vortex near the sharp corners on both sides of the pin fin and downstream section.
-
-
[1] HAN J C, DUTTA S, EKKAD S. Gas turbine heat transfer and cooling technology[M]. New York, US: CRC Press, 2012. [2] 刘松龄, 陶智. 燃气涡轮发动机的传热和空气系统[M]. 上海: 上海交通大学出版社, 2018. [3] 朱惠人, 张丽, 郭涛. 高温透平叶片的传热与冷却[M]. 西安: 西安交通大学出版社, 2017. [4] 曹玉璋, 陶智, 徐国强, 等. 航空发动机传热学[M]. 北京: 北京航空航天大学出版社, 2005. [5] SHI Shengxian,DING Junfei,NEW T H,et al. Light-field camera-based 3D volumetric particle image velocimetry with dense ray tracing reconstruction technique[J]. Experiments in Fluids,2017,58(7): 1-16. [6] QU Qianwei,CAO Zhang,XU Lijun,et al. Reconstruction of two-dimensional velocity distribution in scramjet by laser absorption spectroscopy tomography[J]. Applied Optics,2019,58(1): 205-212. doi: 10.1364/AO.58.000205 [7] ZHANG Juqi,QI Hong,REN Yatao,et al. Acoustic tomography of temperature and velocity fields by using the radial basis function and alternating direction method of multipliers[J]. International Journal of Heat and Mass Transfer,2022,188: 122660. doi: 10.1016/j.ijheatmasstransfer.2022.122660 [8] MORAN P R. A flow velocity zeugmatographic interlace for NMR imaging in humans[J]. Magnetic Resonance Imaging,1982,1(4): 197-203. doi: 10.1016/0730-725X(82)90170-9 [9] KU D N,BIANCHERI C L,PETTIGREW R I,et al. Evaluation of magnetic resonance velocimetry for steady flow[J]. Journal of Biomechanical Engineering,1990,112(4): 464-472. doi: 10.1115/1.2891212 [10] OSHINSKI J N,KU D N,PETTIGREW R I. Turbulent fluctuation velocity: the most significant determinant of signal loss in stenotic vessels[J]. Magnetic Resonance in Medicine,1995,33(2): 193-199. doi: 10.1002/mrm.1910330208 [11] BOGREN H G,BUONOCORE M H. 4D magnetic resonance velocity mapping of blood flow patterns in the aorta in young vs. elderly normal subjects[J]. Journal of Magnetic Resonance Imaging,1999,10(5): 861-869. doi: 10.1002/(SICI)1522-2586(199911)10:5<861::AID-JMRI35>3.0.CO;2-E [12] PHILIP CHANG C T,WATSON A T. NMR imaging of flow velocity in porous media[J]. AIChE Journal,1999,45(3): 437-444. doi: 10.1002/aic.690450302 [13] 蒋兰兰. 多孔介质内多相流动的核磁共振成像实验研究[D]. 辽宁 大连: 大连理工大学, 2010.JIANG Lanlan. Experimental study on multiphase fluid flow in porous media by magnetic resonance imaging[D]. Dalian Liaoning: Dalian University of Technology, 2010. (in Chinese) [14] XUE Kaihua,YANG Lei,ZHAO Jiafei,et al. The study of flow characteristics during the decomposition process in hydrate-bearing porous media using magnetic resonance imaging[J]. Energies,2019,12(9): 1736. doi: 10.3390/en12091736 [15] ELKINS C J,MARKL M,PELC N,et al. 4D Magnetic resonance velocimetry for mean velocity measurements in complex turbulent flows[J]. Experiments in Fluids,2003,34(4): 494-503. doi: 10.1007/s00348-003-0587-z [16] RYAN K J, COLETTI F, DABIRI J O, et al. Three-dimensional velocity measurements around and downstream of a rotating vertical axis wind turbine[R]. ASME GT2014-26285, 2014. [17] FREUDENHAMMER D,PETERSON B,DING C P,et al. The influence of cylinder head geometry variations on the volumetric intake flow captured by magnetic resonance velocimetry[J]. SAE International Journal of Engines,2015,8(4): 1826-1836. doi: 10.4271/2015-01-1697 [18] HOFFMAN D W,VILLAFAÑE L,ELKINS C J,et al. Experimental study of flow inside a centrifugal fan using magnetic resonance velocimetry[J]. Journal of Engineering for Gas Turbines and Power,2020,142(4): 041019. doi: 10.1115/1.4045064 [19] ISSAKHANIAN E. 3D velocity and scalar field measurements of discrete hole film cooling flows[D]. Stanford, US: Stanford University, 2012. [20] ISSAKHANIAN E,ELKINS C J,EATON J K. In-hole and mainflow velocity measurements of low-momentum jets in crossflow emanating from short holes[J]. Experiments in Fluids,2012,53(6): 1765-1778. doi: 10.1007/s00348-012-1397-y [21] ISSAKHANIAN E,ELKINS C J,EATON J K. Film cooling effectiveness improvements using a nondiffusing oval hole[J]. Journal of Turbomachinery,2016,138(4): 041004. doi: 10.1115/1.4032045 [22] BENSON M J, BINDON D, COOPER M, et al. Detailed velocity and heat transfer measurements in an advanced gas turbine vane insert using MRV and IR thermometry[R]. ASME GT2020-14984, 2020. [23] ELKINS C J,MARKL M,IYENGAR A,et al. Full-field velocity and temperature measurements using magnetic resonance imaging in turbulent complex internal flows[J]. International Journal of Heat and Fluid Flow,2004,25(5): 702-710. doi: 10.1016/j.ijheatfluidflow.2004.05.017 [24] TSURU T, ISHIDA K, FUJITA J, et al. Three-dimensional visualization of flow characteristic using a magnetic resonance imaging (MRI) in a lattice cooling channel [R]. ASME GT2018-76409, 2018. [25] BENSON M J,BANKO A J,ELKINS C J,et al. The 2019 MRV challenge: turbulent flow through a U-bend[J]. Experiments in Fluids,2020,61(6): 1-17. [26] CHING D S,ELKINS C J,EATON J K. Investigation of geometric sensitivity of a non-axisymmetric bump: 3D mean velocity measurements[J]. Experiments in Fluids,2018,59(9): 1-14. [27] CHING D S,ELKINS C J,ALLEY M T,et al. Unsteady vortex structures in the wake of nonaxisymmetric bumps using spiral MRV[J]. Experiments in Fluids,2018,59(10): 1-17. [28] SIEKMAN M, HELMER D, HWANG W, et al. A combined CFD/MRV study of flow through a pin bank[R]. ASME GT2014-25350, 2014. [29] GOLDSTEIN R J,KARNI J. The effect of a wall boundary layer on local mass transfer from a cylinder in crossflow[J]. Journal of Heat Transfer,1984,106(2): 260-267. doi: 10.1115/1.3246667 [30] CHYU M K,HSING Y C,NATARAJAN V. Convective heat transfer of cubic fin arrays in a narrow channel[J]. Journal of Turbomachinery,1998,120(2): 362-367. doi: 10.1115/1.2841414 [31] WON S Y,MAHMOOD G I,LIGRANI P M. Spatially-resolved heat transfer and flow structure in a rectangular channel with pin fins[J]. International Journal of Heat and Mass Transfer,2004,47(8/9): 1731-1743. [32] XU Jin,ZHANG Ke,DUAN Jingtian,et al. Systematic comparison on convective heat transfer characteristics of several pin fins for turbine cooling[J]. Crystals,2021,11(8): 977. doi: 10.3390/cryst11080977 [33] 熊国欣, 李立本. 核磁共振成像原理[M]. 北京: 科学出版社, 2007. [34] 段敬添,张科,徐进,等. 圆形肋柱通道强化换热流动机理实验研究[J]. 实验流体力学,2021,35(4): 10-18. doi: 10.11729/syltlx20200134DUAN Jingtian,ZHANG Ke,XU Jin,et al. Experimental investigation on flow mechanism driving heat transfer enhancement in a channel with circular pin fins[J]. Journal of Experiments in Fluid Mechanics,2021,35(4): 10-18. (in Chinese) doi: 10.11729/syltlx20200134 [35] OTTO M,GUPTA G,TRAN P K,et al. Investigation of endwall heat transfer in staggered pin fin arrays[J]. Journal of Turbomachinery,2021,143(2): 021009. doi: 10.1115/1.4049784 -