留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空发动机动态总压探针结构设计与优化

武乐群 潘慕绚 郑天翔 丁航

武乐群, 潘慕绚, 郑天翔, 等. 航空发动机动态总压探针结构设计与优化[J]. 航空动力学报, 2023, 38(12):2872-2882 doi: 10.13224/j.cnki.jasp.20220059
引用本文: 武乐群, 潘慕绚, 郑天翔, 等. 航空发动机动态总压探针结构设计与优化[J]. 航空动力学报, 2023, 38(12):2872-2882 doi: 10.13224/j.cnki.jasp.20220059
WU Lequn, PAN Muxuan, ZHENG Tianxiang, et al. Design and optimization of dynamic total pressure probe structure in aero-engines[J]. Journal of Aerospace Power, 2023, 38(12):2872-2882 doi: 10.13224/j.cnki.jasp.20220059
Citation: WU Lequn, PAN Muxuan, ZHENG Tianxiang, et al. Design and optimization of dynamic total pressure probe structure in aero-engines[J]. Journal of Aerospace Power, 2023, 38(12):2872-2882 doi: 10.13224/j.cnki.jasp.20220059

航空发动机动态总压探针结构设计与优化

doi: 10.13224/j.cnki.jasp.20220059
基金项目: JKW领域基金(2020-JCJQ-JJ-382); 中国航发产学研项目(HFZL2019CXY009)
详细信息
    作者简介:

    武乐群(1997-),男,硕士,主要从事航空发动机动态压力测量方面的研究

    通讯作者:

    潘慕绚(1977-),女,教授,博士,主要从事航空发动机智能感知与控制方面的研究。E-mail:muxuan.pan@nuaa.edu.cn

  • 中图分类号: V233.7

Design and optimization of dynamic total pressure probe structure in aero-engines

  • 摘要:

    提出一种具有强化散热结构的短测管型总压探针方案,建立了总压探针的多物理场数值模拟模型,提出一种基于数值模拟和改进粒子群算法的总压探针结构联合优化方法,采用混合网格划分技术减少网格数量,以正态分布初始化粒子位置,同时增加种群学习因子和自适应邻域比例,提高算法的优化效率。数值仿真结果表明,数值模拟模型中网格顶点数量减少了47%,改进后优化算法迭代代数减少了37%,优化效率高,获得的总压探针结构满足温度约束,且长度短、质量轻。

     

  • 图 1  典型小涵道比涡扇发动机结构图

    Figure 1.  Typical structure of small bypass ratio turbofan engine

    图 2  总压探针结构

    Figure 2.  Structure of total pressure probe

    图 3  总压探针结构参数

    Figure 3.  Structure parameters of total pressure probe

    图 4  总压探针多物理场数值模拟几何结构图(单位:mm)

    Figure 4.  Geometric structure of multi-physical numerical simulation model of total pressure probe (unit: mm)

    图 5  多物理场模型参数耦合作用机制

    Figure 5.  Coupling mechanism of parameters in multi-physics numerical model

    图 6  总压探针混合网格划分(单位:mm)

    Figure 6.  Hybrid grid of the total pressure probe (unit: mm)

    图 7  基于数值模拟和粒子群算法的联合优化方法流程

    Figure 7.  Process of joint optimization method of numerical calculation and PSO

    图 8  探针xOz截面的温度云图

    Figure 8.  Temperature nephogram of probe at xOz section

    图 9  总压探针内沿中心轴线的温度分布

    Figure 9.  Temperature distribution along the central axis inside the total pressure probe

    图 10  粒子群算法的最优目标函数曲线

    Figure 10.  Optimal objective function of particle swarm optimization

    图 11  粒子群算法中平均目标函数曲线

    Figure 11.  Mean objective function of particle swarm optimization

    表  1  不同飞行条件和发动机状态下的截面3和截面13的气流参数

    Table  1.   Flow parameters of section 3 and section 13 under different flight conditions and engine conditions

    nh,corMaH/kmTs13/Kps13/PaV13/(m/s)Ts3/Kps3/PaV3/(m/s)
    1.000463.14.1×10554.6805.42.6×10676.1
    1.00.20466.84.2×10554.7811.52.6×10676.4
    1.01.616527.31.7×10556.2907.71.1×10680.5
    0.9000402.82.7×10575.3688.91.6×10672.0
    0.900.20406.12.7×10575.4694.21.6×10672.2
    0.901.616458.31.1×10578.4777.26.5×10576.2
    0.8000352.21.7×105102.3579.28.9×10568.2
    0.801.616400.66.9×104107.5654.83.7×10572.4
    下载: 导出CSV

    表  2  不同内外涵网格划分参数

    Table  2.   Grid parameters of different internal and external grid partitions

    序号网格参数网格统计数据
    Le,max/mmLe,min/mmke,maxnv/105ne/105nf/105
    15311.21.41.273.768.8
    220.96.421.251.55.210
    310.83.211.152.18.514
    下载: 导出CSV

    表  3  不同总压探针网格划分参数

    Table  3.   Grid parameters of different total pressure probe grid partitions

    序号短测管网格参数/mm环肋片网格参数/mm网格统计数据
    Le,maxLe,minLe,maxLe,minnv/105ne/105nf/105
    421.50.60.40.892.66.2
    51.510.50.30.982.86.9
    610.50.40.21.33.88.8
    70.50.30.30.11.85.213
    下载: 导出CSV

    表  4  不同总压探针网格划分下的数值模拟结果

    Table  4.   Simulation results of different total pressure probe grid partitions

    序号Te/Kts/min
    模拟结果1模拟结果2模拟结果3平均值模拟结果1模拟结果2模拟结果3平均值
    4678.50677.31678.83678.2130333332
    5657.82658.64656.43657.6336373536
    6657.12656.32659.42657.6254555956
    7656.38658.25654.12656.2583828182
    下载: 导出CSV

    表  5  改进后粒子群算法各代最优粒子参数统计

    Table  5.   Statistics of optimal particle parameters of each iteration of improved PSO

    迭代次数${s_0}{\text{/mm}}$$s{\text{/mm}}$$\delta {\text{/mm}}$${d_2}{\text{/mm}}$$n$$ {L_{{\text{zg}}}}{\text{/mm}} $$ m{\text{/g}} $$ {T_{\text{e}}}{\text{/K}} $
    03.24.20.513.7216.55.1653.8
    53.74.40.711.4216.75.1652.4
    102.54.80.612.7218.84.4646.9
    151.05.00.48.0116.54.6657.2
    251.04.40.511.7316.35.0649.5
    下载: 导出CSV
  • [1] 曹明, 黄金泉, 周健, 等. 民用航空发动机故障诊断与健康管理现状、挑战与机遇: 气路、机械和 FADEC 系统故障诊断与预测[EB/OL]. [2022-02-09]. https://kns.cnki.net/kcms/detail/11.1929.V.20210825.1351.006.html.

    CAO Ming, HUANG Jinquan, ZHOU Jian, et al. Civil aero-engine diagnostics & health management: current status, challenges and opportunities: engine gas path, mechanical FADEC diagnosis and prognosis[EB/OL]. [2022-02-09]. https://kns.cnki.net/kcms/detail/11.1929.V.20210825.1351.006.html. (in Chinese)
    [2] WERNER M,BAAR R,HALUSKA P,et al. Bidirectional flow measurement based on the differential pressure method for surge analysis on a small centrifugal compressor[J]. Proceedings of the Institution of Mechanical Engineers: Part C: Journal of Mechanical Engineering Science,2018,232(24): 4450-4460. doi: 10.1177/0954406216667406
    [3] 刘卓. 航空发动机失速喘振辅助判别方法研究[J]. 计量与测试技术,2019,46(3): 70-72.

    LIU Zhuo. Research on the auxiliary discriminant method for stall and surge conditions of aero-engine[J]. Metrology & Measurement Technique,2019,46(3): 70-72. (in Chinese)
    [4] 孔祥興. 发动机健康管理: 为动力装置的安全可靠运行提供有力保障[J]. 航空动力,2019(1): 67.

    KONG Xiangxing. EHM: providing a safe and reliable operation of powerplant[J]. Aerospace Power,2019(1): 67. (in Chinese)
    [5] 黄金泉,王启航,鲁峰. 航空发动机气路故障诊断研究现状与展望[J]. 南京航空航天大学学报,2020,52(4): 507-522.

    HUANG Jinquan,WANG Qihang,LU Feng. Research status and prospect of gas path fault diagnosis for aeroengine[J]. Journal of Nanjing University of Aeronautics & Astronautics,2020,52(4): 507-522. (in Chinese)
    [6] 潘慕绚,黄金泉,郭伟,等. 脉冲爆震发动机高温压力测量方法[J]. 推进技术,2009,30(3): 355-359.

    PAN Muxuan,HUANG Jinquan,GUO Wei,et al. Pressure measurement method under high temperature for pulse detonation engine[J]. Journal of Propulsion Technology,2009,30(3): 355-359. (in Chinese)
    [7] 何文涛,李艳华,邹江波,等. 高温压力传感器的研究现状与发展趋势[J]. 遥测遥控,2016,37(6): 61-71.

    HE Wentao,LI Yanhua,ZOU Jiangbo,et al. Present research status and prospective trend of high-temperature pressure sensor[J]. Journal of Telemetry, Tracking and Command,2016,37(6): 61-71. (in Chinese)
    [8] GIULIANI A,DRERA L,ARANCIO D,et al. SOI-based, high reliable pressure sensor with floating concept for high temperature applications[J]. Procedia Engineering,2014,87: 720-723. doi: 10.1016/j.proeng.2014.11.639
    [9] KURTZ A D, NED A A, EPSTEIN A H. Ultra high temperature, miniature, SOI sensors for extreme environments[J]. IMAPS International HiTEC, 2004: 1-11.
    [10] ZIERMANN R, VON BERG J, REICHERT W, et al. A high temperature pressure sensor with/spl beta /-SiC piezoresistors on SOI substrates[C]//Proceedings of International Solid State Sensors and Actuators Conference. Piscataway, US: IEEE, 2002: 1411-1414.
    [11] 潘慕绚,刘杨琳,李瑜. 面向硅压阻式压力传感器温度补偿的组合方法[J]. 航空动力学报,2021,36(6): 1188-1196.

    PAN Muxuan,LIU Yanglin,LI Yu. A combined temperature-compensation approach to silicon piezoresistance pressure sensor[J]. Journal of Aerospace Power,2021,36(6): 1188-1196. (in Chinese)
    [12] 叶挺,梁庭,张文栋. 压力测试中引压管的动态特性研究[J]. 中北大学学报(自然科学版),2011,32(2): 222-226.

    YE Ting,LIANG Ting,ZHANG Wendong. Dynamic characteristic of transmission tube in pressure measurement system[J]. Journal of North University of China (Natural Science Edition),2011,32(2): 222-226. (in Chinese)
    [13] 张红艳,徐鹏. 关于传压管道的特性分析[J]. 应用科技,2009,36(11): 20-23.

    ZHANG Hongyan,XU Peng. The characteristics of pressure transmission pipeline[J]. Applied Science and Technology,2009,36(11): 20-23. (in Chinese)
    [14] 王维新,谢壮宁. 测压传压管路系统动态特性的试验分析[J]. 西北大学学报(自然科学版),2005,35(4): 392-396.

    WANG Weixin,XIE Zhuangning. Experimental investigation on the dynamic characteristics of tubing systems for fluctuating wind pressure measurements[J]. Journal of Northwest University (Natural Science Edition),2005,35(4): 392-396. (in Chinese)
    [15] 李嘉,李华聪,王万成,等. 燃油离心泵多目标优化设计及仿真分析[J]. 推进技术,2021,42(3): 666-674.

    LI Jia,LI Huacong,WANG Wancheng,et al. Multi-objective optimization design and simulation for fuel centrifugal pump[J]. Journal of Propulsion Technology,2021,42(3): 666-674. (in Chinese)
    [16] 黄协思. 疲劳约束下航空发动机涡轮盘结构优化设计[D]. 成都: 电子科技大学, 2020.

    HUANG Xiesi. Structure optimization design of aero-engine turbine disk under fatigue constraints[D]. Chengdu: University of Electronic Science and Technology of China, 2020. (in Chinese)
    [17] 范红伟,艾青牧,李家新,等. 某航空发动机主轴轴承参数优化设计[J]. 机械,2020,47(11): 17-23.

    FAN Hongwei,AI Qingmu,LI Jiaxin,et al. Optimum design of spindle bearing parameters for an aeroengine[J]. Machinery,2020,47(11): 17-23. (in Chinese)
    [18] 崔华盛,赵振峰,王恩华,等. 某航空活塞发动机进气系统优化设计[J]. 航空动力学报,2019,34(9): 2063-2070.

    CUI Huasheng,ZHAO Zhenfeng,WANG Enhua,et al. Intake system optimization study and design for an aircraft piston engine[J]. Journal of Aerospace Power,2019,34(9): 2063-2070. (in Chinese)
    [19] 潘慕绚,陈强龙,周永权,等. 涡扇发动机多动力学建模方法[J]. 航空学报,2019,40(5): 99-110.

    PAN Muxuan,CHEN Qianglong,ZHOU Yongquan,et al. A multi-dynamics approach to turbofan engine modeling[J]. Acta Aeronautica et Astronautica Sinica,2019,40(5): 99-110. (in Chinese)
    [20] 周文祥,黄金泉,黄开明. 航空发动机简化实时模型仿真研究[J]. 南京航空航天大学学报,2005,37(2): 251-255.

    ZHOU Wenxiang,HUANG Jinquan,HUANG Kaiming. Real-time simulation system for aeroengine based on simplified model[J]. Journal of Nanjing University of Aeronautics & Astronautics,2005,37(2): 251-255. (in Chinese)
    [21] 刘晶. 结构与非结构网格的生成、转化及应用[D]. 南京: 南京理工大学, 2006.

    LIU Jing. Structured grid and unstructured grid generation, translation and application[D]. Nanjing: Nanjing University of Science and Technology, 2006. (in Chinese)
    [22] 周帅,付琳,汪丁顺,等. 航空发动机数值仿真中网格生成技术的应用与发展[J]. 航空动力,2021(1): 43-47.

    ZHOU Shuai,FU Lin,WANG Dingshun,et al. Application and development of grid generation technology for aero engine simulation[J]. Aerospace Power,2021(1): 43-47. (in Chinese)
    [23] 董亮. 非结构化网格生成技术研究及应用[D]. 江苏 镇江: 江苏大学, 2010.

    DONG Liang. The study and application of unstructured mesh generation technique[D]. Zhenjiang Jiangsu: Jiangsu University, 2010. (in Chinese)
    [24] 苏静波,殷佩生,邵国建. 工程中有限元网格生成技术的研究和应用[J]. 工程图学学报,2008,29(6): 13-19.

    SU Jingbo,YIN Peisheng,SHAO Guojian. Research and application on finite element mesh generation technique in engineering[J]. Journal of Engineering Graphics,2008,29(6): 13-19. (in Chinese)
    [25] 苗卓广,谢寿生,吴勇,等. 基于改进粒子群算法的航空发动机状态变量建模[J]. 推进技术,2012,33(1): 73-77.

    MIAO Zhuoguang,XIE Shousheng,WU Yong,et al. Aero-engine state variable modeling based on the improved particle swarm optimization[J]. Journal of Propulsion Technology,2012,33(1): 73-77. (in Chinese)
    [26] 刘楠,黄金泉. 应用改进粒子群算法的涡轴发动机性能寻优[J]. 南京航空航天大学学报,2013,45(3): 303-308.

    LIU Nan,HUANG Jinquan. Performance seeking of turbo-shaft engines based on improved particle swarm optimization algorithm[J]. Journal of Nanjing University of Aeronautics & Astronautics,2013,45(3): 303-308. (in Chinese)
    [27] 杨弘枨,刘山,靳广在,等. 基于遗传算法优化小波网络的柔性喷管力矩特性辨识方法[J]. 航空动力学报,2022,37(9): 1936-1945. doi: 10.13224/j.cnki.jasp.20210350

    YANG Hongcheng,LIU Shan,JIN Guangzai,et al. Identification of flexible nozzle torque properties based on wavelet neural network optimized by genetic algorithm[J]. Journal of Aerospace Power,2022,37(9): 1936-1945. (in Chinese) doi: 10.13224/j.cnki.jasp.20210350
    [28] 郭彩杏,郭晓金,柏林江. 改进遗传模拟退火算法优化BP算法研究[J]. 小型微型计算机系统,2019,40(10): 2063-2067.

    GUO Caixing,GUO Xiaojin,BAI Linjiang. Rsearch on improved BP algorithm for genetic simulated annealing algorithm[J]. Journal of Chinese Computer Systems,2019,40(10): 2063-2067. (in Chinese)
    [29] 张震,魏鹏,李玉峰,等. 改进粒子群联合禁忌搜索的特征选择算法[J]. 通信学报,2018,39(12): 60-68.

    ZHANG Zhen,WEI Peng,LI Yufeng,et al. Feature selection algorithm based on improved particle swarm joint taboo search[J]. Journal on Communications,2018,39(12): 60-68. (in Chinese)
    [30] 魏智辉,梁言. 进化粒子群算法在航空发动机模型求解中的应用[J]. 工程与试验,2019,59(4): 54-55.

    WEI Zhihui,LIANG Yan. Application of evolutionary particle swarm optimization algorithm in aero-engine model solving[J]. Engineering & Test,2019,59(4): 54-55. (in Chinese)
    [31] RAMADHANI B N I F,GARSIDE A K. Particle swarm optimization algorithm to solve vehicle routing problem with fuel consumption minimization[J]. Jurnal Optimasi Sistem Industri,2021,20(1): 1-10.
    [32] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of ICNN’95 International Conference on Neural Networks. Piscataway, US: IEEE, 2002: 1942-1948.
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  251
  • HTML浏览量:  148
  • PDF量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-09
  • 网络出版日期:  2023-08-30

目录

    /

    返回文章
    返回