留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低供油压下挤压油膜阻尼器空穴效应试验研究

陈亚龙 马会防 黄延忠 张广辉

陈亚龙, 马会防, 黄延忠, 等. 低供油压下挤压油膜阻尼器空穴效应试验研究[J]. 航空动力学报, 2024, 39(7):20220061 doi: 10.13224/j.cnki.jasp.20220061
引用本文: 陈亚龙, 马会防, 黄延忠, 等. 低供油压下挤压油膜阻尼器空穴效应试验研究[J]. 航空动力学报, 2024, 39(7):20220061 doi: 10.13224/j.cnki.jasp.20220061
CHEN Yalong, MA Huifang, HUANG Yanzhong, et al. Experimental study on the effect of cavitation of squeeze film damper under low oil supply pressure[J]. Journal of Aerospace Power, 2024, 39(7):20220061 doi: 10.13224/j.cnki.jasp.20220061
Citation: CHEN Yalong, MA Huifang, HUANG Yanzhong, et al. Experimental study on the effect of cavitation of squeeze film damper under low oil supply pressure[J]. Journal of Aerospace Power, 2024, 39(7):20220061 doi: 10.13224/j.cnki.jasp.20220061

低供油压下挤压油膜阻尼器空穴效应试验研究

doi: 10.13224/j.cnki.jasp.20220061
详细信息
    作者简介:

    陈亚龙(1985-),男,正高级工程师,硕士,主要从事航空发动机结构强度工作。E-mail:cylnpu@163.com

  • 中图分类号: V216.2+1;TK14

Experimental study on the effect of cavitation of squeeze film damper under low oil supply pressure

  • 摘要:

    挤压油膜阻尼器(squeeze film damper, SFD)正常工作时避免不了会出现油膜空穴,为了研究SFD长时间运行时转子基频振动变化以及SFD油膜空穴效应对SFD内外环金属表面空化侵蚀情况,基于全尺寸航空发动机高压转子试验台开展了低供油压力(0.02~0.05 MPa)下SFD空穴效应试验研究,考察SFD在临界转速处长时间运行时转子基频振动变化,以及长时间运行后油膜空穴对SFD内外表面形貌的影响,试验结果表明:长时间运行后SFD油膜空穴会对SFD内环表面产生侵蚀作用,形成水滴形、椭圆形以及形状不规则的凹坑群,证明了在临界转速附近考核SFD空穴效应是SFD低供油压力下安全运行必要的试验内容。

     

  • 图 1  试验装置示意图

    Figure 1.  Schematic of experimental rig

    图 2  SFD结构示意图

    Figure 2.  Diagram of SFD structure

    图 3  试验装置照片

    Figure 3.  Photos of experimental rig

    图 4  试验台俯视图(监测布置)

    Figure 4.  Top view of experimental rig (schematic of monitoring location)

    图 5  第1次试验结果

    Figure 5.  Results of the first experiment

    图 6  第1轮第9次试验振动实测结果(定速运行5 h)

    Figure 6.  Measured vibration results of the 9th experiment of the first round (working on a constant speed for 5 h)

    图 7  第1轮运行16 h的4个通道试验结果

    Figure 7.  Results of experiment for four channels after the first round of operation for 16 h

    图 8  第2轮第2次试验振动实测结果(定速运行4 h)

    Figure 8.  Measured vibration results of the 2nd experiment of the second round (working on a constant speed for 4 h)

    图 9  第2轮运行16 h的4个通道试验结果

    Figure 9.  Results of experiment for four channels after the second round of operation for 16 h

    图 10  第1轮运行16 h前后测点试验结果

    Figure 10.  Experiment results of measuring points before and after the first round of operation for 16 h

    图 11  第2轮运行16 h前后测点试验结果

    Figure 11.  Experiment results of measuring points before and after the second round of operation for 16 h

    图 12  拍摄区域编号示意图

    Figure 12.  Schematic of photography area number

    图 13  区域编号9~10处的损伤图片

    Figure 13.  Damage picture at area No. 9—10

    图 14  区域编号12~13处的损伤图片

    Figure 14.  Damage picture at area No. 12—13

    图 15  区域编号18处的损伤图片

    Figure 15.  Damage picture at area No. 18

    图 16  区域编号27~28处的损伤图片

    Figure 16.  Damage picture at area No. 27—28

    图 17  区域编号29~30处的损伤图片

    Figure 17.  Damage picture at area No. 29—30

    图 18  区域编号34处的损伤图片

    Figure 18.  Damage picture at area No. 34

    表  1  工业相机详细参数

    Table  1.   Detailed parameters of industrial camera

    参数 数值及说明
    品牌 BASLER
    型号 acA2440-75 μm
    像素位深/位 12
    感光芯片供应商 Sony
    感光芯片 IMX250
    分辨率/106像素 5
    水平/垂直像素尺寸 3.45 μm×3.45 μm
    感光芯片尺寸 8.4 mm×7.1 mm
    下载: 导出CSV

    表  2  表面损伤情况汇总

    Table  2.   Summary of surface damage

    区域编号 对比组 运行
    16 h后
    运行
    32 h后
    最终凹坑
    深度/mm
    9~10 × 0.8
    12~13 × 0.2
    18 × 1
    27~28 × 0.1
    29~30 × × <0.1
    34 × × 0.2
    注:表中×代表无凹坑,√ 代表有凹坑。SFD外环经过对比发现油膜区域损伤不严重,第1轮试验后仅发现一处较为明显的凹坑,第2轮试验后没有新增凹坑,最终凹坑深度远远小于0.1 mm。
    下载: 导出CSV

    表  3  评估空气是否进入SFD所需必要参数

    Table  3.   Necessary parameters to evaluate whether air enters SFD

    参数 数值
    转子工作时的滑油流量$ {Q_{{\mathrm{oil}}}} $ 36 L/h(0.01 L/s)
    SFD直径D/mm 235
    油膜区长度L/mm 25
    转子涡动半径$ e $/mm 0.015~0.02
    转子工作转速$ \varOmega $/(r/min) 1891
    下载: 导出CSV
  • [1] KU C P,TICHY J A. An experimental and theoretical study of cavitation in a finite submerged squeeze film damper[J]. Journal of Tribology,1990,112(4): 725-732. doi: 10.1115/1.2920321
    [2] DIAZ S E,SAN ANDRES L A. Measurements of pressure in a squeeze film damper with an air/oil bubbly mixture[J]. Tribology Transactions,1998,41(2): 282-288. doi: 10.1080/10402009808983749
    [3] ZEIDAN F Y,VANCE J M. Cavitation leading to a two phase fluid in a squeeze film damper[J]. Tribology Transactions,1989,32(1): 100-104. doi: 10.1080/10402008908981868
    [4] WANG Zhenlin,ZHANG Guanghui,WEN Jianquan,et al. Numerical modeling of the flow in the squeeze film dampers with oil feed groove by computational fluid dynamic analysis[J]. Proceedings of the Institution of Mechanical Engineers: Part J Journal of Engineering Tribology,2017,231(6): 693-707.
    [5] SAN ANDRÉS L,DELGADO A. Identification of force coefficients in a squeeze film damper with a mechanical end seal—centered circular orbit tests[J]. Journal of Tribology,2007,129(3): 660-668. doi: 10.1115/1.2736708
    [6] LAURENTIU M. A brief discussion regarding types of cavitation in squeeze film dampers and cavitation effects[J]. INCAS BULLETIN,2017,9(1): 71-76. doi: 10.13111/2066-8201.2017.9.1.7
    [7] FAN Tieshu,HAMZEHLOUIA S,BEHDINAN K. The effect of lubricant inertia on fluid cavitation for high-speed squeeze film dampers[J]. Journal of Vibroengineering,2017,19(8): 6122-6134. doi: 10.21595/jve.2017.19314
    [8] 崔颖,李婷,江齐,等. 基于两相流模型的挤压油膜阻尼器空化流场特性数值模拟[J]. 航空动力学报,2019,34(8): 1781-1787. CUI Ying,LI Ting,JIANG Qi,et al. Numerical simulation on cavitation flow field characteristics of squeeze film damper based on two-phase flow model[J]. Journal of Aerospace Power,2019,34(8): 1781-1787. (in Chinese

    CUI Ying, LI Ting, JIANG Qi, et al. Numerical simulation on cavitation flow field characteristics of squeeze film damper based on two-phase flow model[J]. Journal of Aerospace Power, 2019, 34(8): 1781-1787. (in Chinese)
    [9] YAN W,LI X,LI Y. CFD simulation of air ingestion in a squeeze film damper: GT2019-91285 [R]. Phoenix,US: ASME ,2019.
    [10] IACOBELLIS V,BEHDINAN K,CHAN D,et al. Effect of hole feed system on the response of a squeeze film damper supported rotor[J]. Tribology International,2020,151: 106450. doi: 10.1016/j.triboint.2020.106450
    [11] TUL’CHINSKII G A,PANKRATOV G A. Experience of on-site investigations of the cavitation erosion of hydraulic turbines[J]. Hydrotechnical Construction,1988,22(2): 120-123. doi: 10.1007/BF01428977
    [12] OKADA T,IWAI Y,AWAZU K. A study of cavitation bubble collapse pressures and erosion: Part 1 a method for measurement of collapse pressures[J]. Wear,1989,133(2): 219-232. doi: 10.1016/0043-1648(89)90037-9
    [13] CHEN Haosheng,LI Jiang,CHEN Darong,et al. Damages on steel surface at the incubation stage of the vibration cavitation erosion in water[J]. Wear,2008,265(5/6): 692-698.
    [14] OKA Y I,HAYASHI H. Evaluation of erosion resistance for metal–ceramic composites and cermets using a water-jet testing apparatus[J]. Wear,2011,271(9/10): 1397-1403.
    [15] KAZAMA T,KUMAGAI K,OSAFUNE Y,et al. Erosion of grooved surfaces by cavitating jet with hydraulic oil[J]. Journal of Flow Control,Measurement & Visualization,2015,3(2): 41-50.
    [16] DULAR M,PETKOVŠEK M. On the mechanisms of cavitation erosion–coupling high speed videos to damage patterns[J]. Experimental Thermal and Fluid Science,2015,68: 359-370. doi: 10.1016/j.expthermflusci.2015.06.001
    [17] ROMANOV A,EVDOKIMOV S,SELIVERSTOV V. Cavitation research results of hydroturbine impeller blades and their analysis[J]. MATEC Web of Conferences,2018,196: 02006. doi: 10.1051/matecconf/201819602006
    [18] ABOUEL-KASEM A,OSMAN O O,KARRAB S A,et al. The limited role of pit formed by microjet in evolution of cavitation erosion in the incubation period[J]. Journal of Tribology,2022,144(4): 041702. doi: 10.1115/1.4051653
    [19] ZAKRZEWSKA D E,BUSZKO M H,KRELLA A K,et al. Damage development on the surface of nickel coating in the initial period of erosion[J]. Materials,2021,14(11): 3123.1-3123.14. doi: 10.3390/ma14113123
    [20] ZEIDAN F,VANCE J. Cavitation and air entrainment effects on the response of squeeze film supported rotors[J]. Journal of Tribology,1990,112(2): 347-353. doi: 10.1115/1.2920263
    [21] DIAZ S,SAN ANDRE´S L. A model for squeeze film dampers operating with air entrainment and validation with experiments[J]. Journal of Tribology,2001,123(1): 125-133. doi: 10.1115/1.1330742
    [22] 张微,王浩洁,丁千,等. 极低压下两相流挤压油膜阻尼器油膜参数特性[J]. 航空动力学报,2020,35(3): 560-568. ZHANG Wei,WANG Haojie,DING Qian,et al. Oil film characteristic of two-phase flow squeeze film damper under extremely low oil supply pressure[J]. Journal of Aerospace Power,2020,35(3): 560-568. (in Chinese

    ZHANG Wei, WANG Haojie, DING Qian, et al. Oil film characteristic of two-phase flow squeeze film damper under extremely low oil supply pressure[J]. Journal of Aerospace Power, 2020, 35(3): 560-568. (in Chinese)
  • 加载中
图(18) / 表(3)
计量
  • 文章访问数:  210
  • HTML浏览量:  96
  • PDF量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-10
  • 网络出版日期:  2024-02-19

目录

    /

    返回文章
    返回