留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过载对丁羟三组元推进剂燃烧特性的影响

贺业 李军伟 田忠亮 覃生福 许团委 丁淼 王宁飞

贺业, 李军伟, 田忠亮, 等. 过载对丁羟三组元推进剂燃烧特性的影响[J]. 航空动力学报, 2024, 39(8):20220067 doi: 10.13224/j.cnki.jasp.20220067
引用本文: 贺业, 李军伟, 田忠亮, 等. 过载对丁羟三组元推进剂燃烧特性的影响[J]. 航空动力学报, 2024, 39(8):20220067 doi: 10.13224/j.cnki.jasp.20220067
HE Ye, LI Junwei, TIAN Zhongliang, et al. Effects of acceleration overload on combustion characteristics of HTPB/AP/Al propellant[J]. Journal of Aerospace Power, 2024, 39(8):20220067 doi: 10.13224/j.cnki.jasp.20220067
Citation: HE Ye, LI Junwei, TIAN Zhongliang, et al. Effects of acceleration overload on combustion characteristics of HTPB/AP/Al propellant[J]. Journal of Aerospace Power, 2024, 39(8):20220067 doi: 10.13224/j.cnki.jasp.20220067

过载对丁羟三组元推进剂燃烧特性的影响

doi: 10.13224/j.cnki.jasp.20220067
基金项目: 国家自然科学基金(22027811)
详细信息
    作者简介:

    贺业(1996-),男,硕士生,主要从事外部载荷下固体火箭发动机内弹道性能研究

    通讯作者:

    李军伟(1978-),男,教授、博士生导师,博士,主要从事固体火箭发动机不稳定燃烧、液体微尺度燃烧、固体火箭发动机设计与仿真研究。E-mail:davie78lee@sina.com

  • 中图分类号: V435

Effects of acceleration overload on combustion characteristics of HTPB/AP/Al propellant

  • 摘要:

    为研究过载对丁羟三组元推进剂燃烧特性的影响,设计了兼具燃速测量和凝相产物收集功能的过载实验发动机。利用过载实验方法,研究了不同过载大小(−50g~+50g)对燃烧室压强、平均燃速、瞬态燃速、凝相产物和发动机羽流的影响。研究表明:①反向过载对燃烧室压强和推进剂燃速几乎没有影响。随着正向过载的增大,燃烧室压强和推进剂燃速增大。②与无过载相比,燃烧室压强在+10g过载下增加35.8%,+30g过载下最大压强增加69.9%,+50g过载下最大压强增加76.8%,且在+30g过载和+50g过载下出现了“驼峰现象”。③与0g相比,+10g过载下燃速增加21%,+30g过载下燃速增加40%,+50g过载下燃速增加44%;+30g和+50g过载下,瞬态燃速先增加后减少,最大值随过载增大而增大,达到最大值的时间随过载的增大而减少。④药杯内的碳和单质铝含量随过载的增大而减小,从−50g过载到+50g过载,分别减小100%和82.28%,氧化铝随过载的增大而增大,增加了402.17%,收集装置内几乎不含碳和铝单质。且收集装置内凝相产物的粒径随正向过载的增大而减小。⑤过载对发动机羽流颜色有显著影响;反向过载下,发动机羽流火焰呈现黄色,且伴随明亮的火星;正向过载下呈现紫色。

     

  • 图 1  过载发动机在移动过载台上安装示意图

    Figure 1.  Schematic diagram of overload engines installation on mobile overload platform

    图 2  过载发动机的示意图及照片(单位:mm)

    Figure 2.  Schematic diagram and photo of overload engines (unit:mm)

    图 3  装药和收集装置示意图(单位:mm)

    Figure 3.  Schematic diagram of solid propellant and collection device (unit:mm)

    图 4  压强和压强增长速率

    Figure 4.  Pressure and pressure rise rate

    图 5  过载-瞬态燃速图

    Figure 5.  Overload-transient burn rate graph

    图 6  过载下药杯内残渣的照片

    Figure 6.  Photo of residue in medicine cup under overload

    图 7  凝相产物质量百分比-过载

    Figure 7.  Condensed phase product mass percentage-overload

    图 8  颗粒群图

    Figure 8.  Particle population map

    图 9  燃烧产物形貌结构

    Figure 9.  Morphology and structure of combustion products

    图 10  凝相产物成分

    Figure 10.  Condensed phase product components

    图 11  粒度分析

    Figure 11.  Particle size analysis

    图 12  凝相产物加速度分析

    Figure 12.  Acceleration analysis of condensed phase products

    图 13  燃烧物理模型

    Figure 13.  Physical model of combustion

    图 14  无过载下火焰图

    Figure 14.  Flame graph without overload

    图 15  50g过载下火焰图

    Figure 15.  Flame graph under 50g overload

    图 16  −50g过载下火焰图

    Figure 16.  Flame graph under −50g overload

    图 17  不同过载下火焰图

    Figure 17.  Flame graphs under different overloads

    表  1  推进剂及燃烧产物参数表

    Table  1.   Parameters of propellant and combustion products

    参数 数值
    ρs/(kg/m3 1791
    $ {a_{\text{r}}}/10^{-3}{ ({\mathrm{m}}} \cdot {{{\mathrm{s}}}^{{ - 1}}}{/{\mathrm{MP}}}{{{\mathrm{a}}}^n}{) } $ 3.58
    $n$ 0.32
    ${c_{\text{s}}}/{ ({\mathrm{J}}}/ ({{\mathrm{k}}}{{{\mathrm{g}}}} \cdot {{{\mathrm{K}}}}) ) $ 1408
    $\mu /10^{-4} ({\mathrm{kg}}/ ({{{\mathrm{m}}}} \cdot {{\mathrm{s}}) ) }$ 1.03
    γs 1.13
    $ T_{\mathrm{f}}/\mathrm{K} $ 2987
    $ T_{\mathrm{s}}/\mathrm{K} $ 912.5
    $ T_{\mathrm{i}}/\mathrm{K} $ 293
    下载: 导出CSV

    表  2  过载实验工况

    Table  2.   Overload test condition

    序号 过载 方向 实际过载
    N1 −50g 反向 −49.47g
    N2 −30g 反向 −29.78g
    N3 −10g 反向 −9.93g
    N4 0g 静止 0g
    N5 +10g 正向 9.97g
    N6 +30g 正向 29.76g
    N7 +50g 正向 49.84g
    下载: 导出CSV

    表  3  不同过载下燃速及燃速比γa

    Table  3.   Burning rate and burning rate ratio γa under different overloads

    序号 a/g p/MPa r0/(mm/s) ra/(mm/s) γa
    1 −50 8.79 7.17 7.04 0.98
    2 −30 8.87 7.20 7.14 0.99
    3 −10 9.00 7.23 7.19 0.99
    4 0 7.89 6.93 6.95 1.00
    5 +10 11.06 7.72 9.33 1.21
    6 +30 11.62 7.85 11.01 1.40
    7 +50 11.82 7.89 11.38 1.44
    下载: 导出CSV
  • [1] 张如洲. 加速度对固体火箭发动机性能的影响[J]. 推进技术,1983,4(1): 55-69. ZHANG Ruzhou. Effect of acceleration on performance of solid rocket motor[J]. Journal of Propulsion Technology,1983,4(1): 55-69. (in Chinese

    ZHANG Ruzhou. Effect of acceleration on performance of solid rocket motor[J]. Journal of Propulsion Technology, 1983, 4(1): 55-69. (in Chinese)
    [2] GREATRIX D R,GOTTLIEB J J. Normal acceleration model for composite-propellant combustion[J]. Transactions of the Canadian Society for Mechanical Engineering,1988,12(4): 205-211. doi: 10.1139/tcsme-1988-0029
    [3] GREATRIX D R. Parametric analysis of combined acceleration effects on solid-propellant combustion[J]. Canadian Aeronautics and Space Journal,1994,40: 68-73.
    [4] GREATRIX D R. Acceleration-based combustion augmentation modelling for noncylindrical grain solid rocket motors: AIAA 1995-2876 [R]. Reston,Virigina: AIAA,1995.
    [5] GREATRIX D R. Internal ballistic model for spinning star-grain motors[J]. Journal of Propulsion and Power,1996,12(3): 612-614. doi: 10.2514/3.24077
    [6] COWLES D,NETZER D. The effect of acceleration on composite propellant combustion[J]. Combustion Science and Technology,1971,3(5): 215-229. doi: 10.1080/00102207108952289
    [7] WILLOUGHBY P G,CROWE C T,BAKER K L. A photographic and analytic study of composite propellant combustionin an acceleration field[J]. Journal of Spacecraft and Rockets,1971,8(4): 310-317. doi: 10.2514/3.30271
    [8] CROWE C T. A unified model for the acceleration-produced burning rate augmentation of metalized solid propellants[J]. Combustion Science and Technology,1972,5(1): 55-60. doi: 10.1080/00102207208952503
    [9] NORTHAM G B. Effects of the acceleration vector on transient burning rate of an aluminized solid propellant[J]. Journal of Spacecraft and Rockets,1971,8(11): 1133-1137. doi: 10.2514/3.30357
    [10] ISHII S,NIIOKA T,MITANI T,et al. Combustion of composite propellants in acceleration field[J]. Technical Report of National Aerospace Laboratory,1973,354(9): 109-112.
    [11] KRIER H,SURZHIKOV S,GLICK R. Prediction of the effects of acceleration on the burning of AP/HTPB solid propellants: AIAA 2001-343 [R]. Reston,Virigina: AIAA,2001.
    [12] 曹泰岳. 含金属的固体推进剂在加速度场中燃烧时燃速敏感性的预示[J]. 宇航学报,1988,9(1): 74-81. CAO Taiyue. A prediction of burning rate sensativity of metalized solid propellant in an acceleration field[J]. Journal of Astronautics,1988,9(1): 74-81. (in Chinese

    CAO Taiyue. A prediction of burning rate sensativity of metalized solid propellant in an acceleration field[J]. Journal of Astronautics, 1988, 9(1): 74-81. (in Chinese)
    [13] 曹泰岳. 含金属固体推进剂在加速度场中燃烧时瞬态燃烧特性的预示[J]. 推进技术,1987,8(5): 9-13,76. CAO Taiyue. Prediction of transient combustion characteristics for metallized solid propellant in an accelerated field[J]. Journal of Propulsion Technology,1987,8(5): 9-13,76. (in Chinese

    CAO Taiyue. Prediction of transient combustion characteristics for metallized solid propellant in an accelerated field[J]. Journal of Propulsion Technology, 1987, 8(5): 9-13, 76. (in Chinese)
    [14] 万章吉,商晨燕,曹泰岳. 加速度对固体发动机内弹道性能影响的实验研究[J]. 固体火箭技术,1991,14(3): 24-30. WAN Zhangji,SHANG Chenyan,CAO Taiyue. Experimental study on the influence of acceleration on interior ballistic performance of solid rocket motor[J]. Journal of Solid Rocket Technology,1991,14(3): 24-30. (in Chinese

    WAN Zhangji, SHANG Chenyan, CAO Taiyue. Experimental study on the influence of acceleration on interior ballistic performance of solid rocket motor[J]. Journal of Solid Rocket Technology, 1991, 14(3): 24-30. (in Chinese)
    [15] 万章吉,商晨燕,曹泰岳. 关于加速度场对固体发动机内弹道性能影响的实验研究(之二)[J]. 弹箭与制导学报,1993,13(3): 18-26,33. WAN Zhangji,SHANG Chenyan,CAO Taiyue. Experimental study on the influence of acceleration field on the interior ballistic performance of solid motor (Ⅱ)[J]. Journal of Projectiles Rockets Missiles and Guidance,1993,13(3): 18-26,33. (in Chinese

    WAN Zhangji, SHANG Chenyan, CAO Taiyue. Experimental study on the influence of acceleration field on the interior ballistic performance of solid motor (Ⅱ)[J]. Journal of Projectiles Rockets Missiles and Guidance, 1993, 13(3): 18-26, 33. (in Chinese)
    [16] 张为华,曹泰岳,陈雅琴. 旋转发动机内弹道计算初探[J]. 固体火箭技术,1992,15(2): 1-5. ZHANG Weihua,CAO Taiyue,CHEN Yaqin. Preliminary investigation of internal ballistic calculation for spinning solid rocket motor[J]. Journal of Solid Rocket Technology,1992,15(2): 1-5. (in Chinese

    ZHANG Weihua, CAO Taiyue, CHEN Yaqin. Preliminary investigation of internal ballistic calculation for spinning solid rocket motor[J]. Journal of Solid Rocket Technology, 1992, 15(2): 1-5. (in Chinese)
    [17] 张为华,曹泰岳,万章吉. 固体火箭发动机旋转对燃速的影响[J]. 航空动力学报,1994,9(1): 67-70. ZHANG Weihua,CAO Taiyue,WAN Zhangji. Effect of solid rocket motor rotation on burning rate[J]. Journal of Aerospace Power,1994,9(1): 67-70. (in Chinese

    ZHANG Weihua, CAO Taiyue, WAN Zhangji. Effect of solid rocket motor rotation on burning rate[J]. Journal of Aerospace Power, 1994, 9(1): 67-70. (in Chinese)
    [18] 张为华,曹泰岳,郭印诚. 旋转固体火箭发动机一维内弹道计算[J]. 推进技术,1994,15(3): 28-32. ZHANG Weihua,CAO Taiyue,GUO Yincheng. One-dimensional interior ballistic calculation of rotating solid rocket motor[J]. Journal of Propulsion Technology,1994,15(3): 28-32. (in Chinese

    ZHANG Weihua, CAO Taiyue, GUO Yincheng. One-dimensional interior ballistic calculation of rotating solid rocket motor[J]. Journal of Propulsion Technology, 1994, 15(3): 28-32. (in Chinese)
    [19] 曹泰岳,张为华,万章吉,等. 旋转固体火箭发动机内弹道理论与实验研究[J]. 宇航学报,1997,18(1): 1-7. CAO Taiyue,ZHANG Weihua,WAN Zhangji,et al. Theoretical and experimental study on interior ballistics of rotating solid rocket motor[J]. Journal of Astronautics,1997,18(1): 1-7. (in Chinese

    CAO Taiyue, ZHANG Weihua, WAN Zhangji, et al. Theoretical and experimental study on interior ballistics of rotating solid rocket motor[J]. Journal of Astronautics, 1997, 18(1): 1-7. (in Chinese)
    [20] 张如洲,李葆江,郑晓平,等. 含铝复合推进剂在加速度场中燃烧的试验研究[J]. 推进技术,1989,10(4): 46-49,82. ZHANG Ruzhou,LI Baojiang,ZHENG Xiaoping,et al. An experimental investigation of the combustion of aluminized composite solid propellants in acceleration fields[J]. Journal of Propulsion Technology,1989,10(4): 46-49,82. (in Chinese

    ZHANG Ruzhou, LI Baojiang, ZHENG Xiaoping, et al. An experimental investigation of the combustion of aluminized composite solid propellants in acceleration fields[J]. Journal of Propulsion Technology, 1989, 10(4): 46-49, 82. (in Chinese)
    [21] 张如洲,李葆江,郑晓平. 加速度对丁羟推进剂燃速的影响[J]. 兵工学报,1988,9(2): 17-23. ZHANG Ruzhou,LI Baojiang,ZHENG Xiaoping. Effect of acceleration on the burning rate of htpb composite aluminized solid propellants[J]. Acta Armamentarii,1988,9(2): 17-23. (in Chinese

    ZHANG Ruzhou, LI Baojiang, ZHENG Xiaoping. Effect of acceleration on the burning rate of htpb composite aluminized solid propellants[J]. Acta Armamentarii, 1988, 9(2): 17-23. (in Chinese)
    [22] 张如洲,李葆江,郑晓平,等. 加速度对含铝复合推进剂瞬时燃速的影响[J]. 推进技术,1991,12(1): 35-41. ZHANG Ruzhou,LI Baojiang,ZHENG Xiaoping,et al. Effect of acceleration vector on transient burning rate of aluminized composite solid propellants[J]. Journal of Propulsion Technology,1991,12(1): 35-41. (in Chinese

    ZHANG Ruzhou, LI Baojiang, ZHENG Xiaoping, et al. Effect of acceleration vector on transient burning rate of aluminized composite solid propellants[J]. Journal of Propulsion Technology, 1991, 12(1): 35-41. (in Chinese)
    [23] 张如洲,李葆江,郑晓平. 加速度对含铝复合推进剂燃烧特性的影响[J]. 推进技术,1995,16(2): 54-60. ZHANG Ruzhou,LI Baojiang,ZHENG Xiaoping. Effect of acceleration on combustion characteristics of aluminum-containing composite propellant[J]. Journal of Propulsion Technology,1995,16(2): 54-60. (in Chinese

    ZHANG Ruzhou, LI Baojiang, ZHENG Xiaoping. Effect of acceleration on combustion characteristics of aluminum-containing composite propellant[J]. Journal of Propulsion Technology, 1995, 16(2): 54-60. (in Chinese)
    [24] 张如洲,李葆江,方继明,等. 在加速场下含铝复合推进剂燃烧中粒子动力学研究[J]. 推进技术,1998,19(3): 82-85. ZHANG Ruzhou,LI Baojiang,FANG Jiming,et al. Study on particle dynamics in combustion of aluminum-containing composite propellant under accelerated field[J]. Journal of Propulsion Technology,1998,19(3): 82-85. (in Chinese

    ZHANG Ruzhou, LI Baojiang, FANG Jiming, et al. Study on particle dynamics in combustion of aluminum-containing composite propellant under accelerated field[J]. Journal of Propulsion Technology, 1998, 19(3): 82-85. (in Chinese)
    [25] 张翔宇,高波,甘晓松,等. 飞行过载对固体火箭发动机不稳定燃烧的影响[J]. 宇航学报,2019,40(8): 972-976. ZHANG Xiangyu,GAO Bo,GAN Xiaosong,et al. Impacts of flight acceleration on combustion instability of solid rocket motor[J]. Journal of Astronautics,2019,40(8): 972-976. (in Chinese

    ZHANG Xiangyu, GAO Bo, GAN Xiaosong, et al. Impacts of flight acceleration on combustion instability of solid rocket motor[J]. Journal of Astronautics, 2019, 40(8): 972-976. (in Chinese)
    [26] 田维平,许团委,王健儒. 过载下燃烧室粒子特性与绝热层烧蚀研究进展[J]. 固体火箭技术,2015,38(1): 30-36,66. TIAN Weiping,XU Tuanwei,WANG Jianru. Progress on condensed-phase particle characteristic and insulation ablation in SRM chamber with flight overload[J]. Journal of Solid Rocket Technology,2015,38(1): 30-36,66. (in Chinese

    TIAN Weiping, XU Tuanwei, WANG Jianru. Progress on condensed-phase particle characteristic and insulation ablation in SRM chamber with flight overload[J]. Journal of Solid Rocket Technology, 2015, 38(1): 30-36, 66. (in Chinese)
    [27] 刘长猛,余贞勇,李侃,等. 飞行过载下燃烧室凝相粒子沉积特征数值研究[J]. 固体火箭技术,2017,40(3): 302-306. LIU Changmeng,YU Zhenyong,LI Kan,et al. Simulation research for accretion characteristic of condensed phase particle in SRM chamber with flight overload[J]. Journal of Solid Rocket Technology,2017,40(3): 302-306. (in Chinese

    LIU Changmeng, YU Zhenyong, LI Kan, et al. Simulation research for accretion characteristic of condensed phase particle in SRM chamber with flight overload[J]. Journal of Solid Rocket Technology, 2017, 40(3): 302-306. (in Chinese)
    [28] 白彦军,许团委,刘洋. 模拟过载条件下燃烧室凝相颗粒形态参数试验研究[J]. 固体火箭技术,2017,40(4): 409-413,419. BAI Yanjun,XU Tuanwei,LI Yang. Parameters of combustor condensed phase particles form analysis for overload simulation test[J]. Journal of Solid Rocket Technology,2017,40(4): 409-413,419. (in Chinese

    BAI Yanjun, XU Tuanwei, LI Yang. Parameters of combustor condensed phase particles form analysis for overload simulation test[J]. Journal of Solid Rocket Technology, 2017, 40(4): 409-413, 419. (in Chinese)
    [29] 唐金兰,刘佩进. 固体火箭发动机原理[M]. 北京: 国防工业出版社,2013. TANG Jinlan,LIU Peijin. Principle of solid rocket engine[M]. Beijing: National Defense Industry Press,2013. (in Chinese

    TANG Jinlan, LIU Peijin. Principle of solid rocket engine[M]. Beijing: National Defense Industry Press, 2013. (in Chinese)
    [30] 敖文,刘佩进. 固体推进剂铝团聚模型[J]. 航空动力学报,2017,32(5): 1224-1233. AO Wen,LIU Peijin. Models of aluminum agglomeration in solid propellants[J]. Journal of Aerospace Power,2017,32(5): 1224-1233. (in Chinese

    AO Wen, LIU Peijin. Models of aluminum agglomeration in solid propellants[J]. Journal of Aerospace Power, 2017, 32(5): 1224-1233. (in Chinese)
  • 加载中
图(17) / 表(3)
计量
  • 文章访问数:  53
  • HTML浏览量:  25
  • PDF量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-13
  • 网络出版日期:  2024-03-29

目录

    /

    返回文章
    返回