留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

螺旋桨风车特性分析方法研究

王定奇 高扬 王朝蓬

王定奇, 高扬, 王朝蓬. 螺旋桨风车特性分析方法研究[J]. 航空动力学报, 2024, 39(12):20220070 doi: 10.13224/j.cnki.jasp.20220070
引用本文: 王定奇, 高扬, 王朝蓬. 螺旋桨风车特性分析方法研究[J]. 航空动力学报, 2024, 39(12):20220070 doi: 10.13224/j.cnki.jasp.20220070
WANG Dingqi, GAO Yang, WANG Zhaopeng. Research on analysis method of propeller windmill characteristics[J]. Journal of Aerospace Power, 2024, 39(12):20220070 doi: 10.13224/j.cnki.jasp.20220070
Citation: WANG Dingqi, GAO Yang, WANG Zhaopeng. Research on analysis method of propeller windmill characteristics[J]. Journal of Aerospace Power, 2024, 39(12):20220070 doi: 10.13224/j.cnki.jasp.20220070

螺旋桨风车特性分析方法研究

doi: 10.13224/j.cnki.jasp.20220070
详细信息
    作者简介:

    王定奇(1992-),男,工程师,硕士,研究方向为航空发动机性能特性试飞。E-mail:15191893895@163.com

  • 中图分类号: V221.44

Research on analysis method of propeller windmill characteristics

  • 摘要:

    以某螺旋桨为研究对象,针对螺旋桨稳态时高速风车特性、低速风车特性和空中起动过程中瞬态风车特性,开展了不同飞行高度、真速、桨叶角及转速的仿真计算。定量给出了螺旋桨不同状态点的风车阻力,通过风洞试验进行验证,最大误差为4.63%。通过对标准螺旋桨特性中效用因子和零升迎角的修正,给出理论计算的螺旋桨特性。对仿真和理论计算结果采用数据融合方法给出螺旋桨风车特性最优解。结果表明:高速风车时,螺旋桨转速达到最大1078 r/min,在真速为480 km/h时,桨叶角为30°,拉力系数为−0.36;低速风车时,桨叶角在限动角为14°,来流为350 km/h时,转速为990 r/min,拉力系数为−0.47;起动过程中螺旋桨转速增大,桨叶角减小,风车阻力先增大后减小,回桨至14°,转速为970 r/min,瞬态风车阻力为−2150 kg。螺旋桨风车特性的获取为某型涡桨发动机试飞中风车阻力的确定及试验点规划提供技术支撑。

     

  • 图 1  螺旋桨模型

    Figure 1.  Model of propeller

    图 2  流场拓扑结构

    Figure 2.  Topology of flow field

    图 3  旋转域网格

    Figure 3.  Grid of rotating aera

    图 4  远场域

    Figure 4.  Farfield zone

    图 5  标准桨功率系数

    Figure 5.  Power coefficient of standard propeller

    图 6  标准桨拉力系数

    Figure 6.  Thrust coefficient of standard propeller

    图 7  高速风车计算流程

    Figure 7.  Calculation process of high-speed windmill

    图 8  低速风车计算流程

    Figure 8.  Calculation process of low-speed windmill

    图 9  瞬态风车计算流程

    Figure 9.  Calculation process of transient windmill

    图 10  低速风车计算结果

    Figure 10.  Result of low-speed windmill

    图 11  高速风车计算结果

    Figure 11.  Result of high-speed windmill

    图 12  转速和桨叶角随飞行真速的变化

    Figure 12.  Changes of speed and blade angle with true speed

    图 13  不同高度时低速风车拉力系数对比

    Figure 13.  Comparison of thrust coefficient of low-speed windmill at different heights

    图 14  不同高度时高速风车拉力系数对比

    Figure 14.  Comparison of thrust coefficient of high-speed windmill at different heights

    图 15  起动过程中风车阻力、桨叶角随转速变化曲线

    Figure 15.  Curve of thrust and blade angle with rotating speed in re-start

    图 16  起动过程中阻力系数和桨叶角随前进比变化曲线

    Figure 16.  Curve of thrust coefficient and blade angle with advance ratio in re-start

    图 17  低速风车时r=1.4 m截面速度云图

    Figure 17.  Velocity field of r=1.4 m section at low-speed windmill

    图 18  高速风车时r=1.4 m截面速度云图

    Figure 18.  Velocity field of r=1.4 m section at high-speed windmill

    图 19  瞬态风车时r=1.4 m截面速度云图

    Figure 19.  Velocity field of r=1.4 m section at transient windmill

    $ {C_{T350}} $ 标准桨拉力系数 $ {C_T} $ 拉力系数
    $ {C_{P350}} $ 标准桨功率系数 $ {C_P} $ 功率系数
    $ { ( {{\theta _{0.7}}} ) _{350}} $/(°) 标准桨桨叶角 $ {\theta _{0.7}} $/(°) 桨叶角
    $ J $ 前进比 Hp/m 飞行高度
    N/(r/min) 发动机转速 n/(r/s) 螺旋桨转速
    D/m 螺旋桨直径 $ \rho $/(kg/m3 大气密度
    $ {V_{\text{t}}} $/(km/h) 飞行真速 $ {V_{\text{i}}} $/(km/h) 飞行表速
    下载: 导出CSV

    表  1  孤立螺旋桨网格无关性验证

    Table  1.   Grid independence verification of isolated propeller

    网格/104 CT 误差/%
    CFD 风洞试验
    300 0.4064 0.4310 5.70
    500 0.4110 0.4310 4.63
    800 0.4114 0.4310 4.61
    下载: 导出CSV

    表  2  数值仿真与风洞试验结果对比

    Table  2.   Comparison between numerical simulation and wind tunnel test

    螺旋桨状态 J $ \theta $/(°) CT CP 误差/%
    CFD 风洞试验 CFD 风洞试验 CT CP
    低速风车 1.23 14 −0.312 −0.327 −0.133 −0.141 2.96 3.58
    高速风车 2.15 30 −0.338 −0.351 −0.379 −0.394 3.70 3.74
    瞬态风车 2.74 35 −0.411 −0.431 −0.504 −0.522 4.61 4.55
    下载: 导出CSV

    表  3  指示空速与真速

    Table  3.   Indicate speed compared to true speed

    Hp/m Vi/(km/h) Vt/(km/h)
    3000 300~330 330~363
    4000 300~330 365~401
    6000 300~330 405~445
    8000 300~330 452~496
    下载: 导出CSV
  • [1] 王占学,王永杰,乔渭阳,等. 涡扇发动机低转速部件特性扩展和风车状态性能模拟[J]. 推进技术,2006,27(2): 146-149,181. WANG Zhanxue,WANG Yongjie,QIAO Weiyang,et al. Extrapolating component maps into the low speed and simulation of windmilling performance of turbofan engine[J]. Journal of Propulsion Technology,2006,27(2): 146-149,181. (in Chinese doi: 10.3321/j.issn:1001-4055.2006.02.012

    WANG Zhanxue, WANG Yongjie, QIAO Weiyang, et al. Extrapolating component maps into the low speed and simulation of windmilling performance of turbofan engine[J]. Journal of Propulsion Technology, 2006, 27(2): 146-149, 181. (in Chinese) doi: 10.3321/j.issn:1001-4055.2006.02.012
    [2] 刘沛清. 空气螺旋桨理论及其应用[M]. 北京: 北京航空航天大学出版社,2006: 59-66. LIU Peiqing. Air propeller theory and its application[M]. Beijing: Beijing University of Aeronautics & Astronautics Press,2006: 59-66. (in Chinese

    LIU Peiqing. Air propeller theory and its application[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2006: 59-66. (in Chinese)
    [3] 周辉华. 国外涡桨发动机的发展[J]. 航空科学技术,2013,24(1): 18-22. ZHOU Huihua. The development prospect of turbo-propeller engines[J]. Aeronautical Science & Technology,2013,24(1): 18-22. (in Chinese doi: 10.3969/j.issn.1007-5453.2013.01.006

    ZHOU Huihua. The development prospect of turbo-propeller engines[J]. Aeronautical Science & Technology, 2013, 24(1): 18-22. (in Chinese) doi: 10.3969/j.issn.1007-5453.2013.01.006
    [4] 范洁川. 风洞试验手册[M]. 北京: 航空工业出版社,2002. FAN Jiechuan. Handbook of wind tunnel test[M]. Beijing: Aviation Industry Press,2002. (in Chinese

    FAN Jiechuan. Handbook of wind tunnel test[M]. Beijing: Aviation Industry Press, 2002. (in Chinese)
    [5] BRAIG W,SCHULTE H,RIEGLER C. Comparative analysis of the windmilling performance of turbojet and tbrbofan engines[J]. Journal of Propulsion and Power,1999,15(2): 326-333. doi: 10.2514/2.5430
    [6] SU Y I , JIN S S , SHIK L J. Windmilling characteristics of centrifugal-flow turbojets[J]. Journal of Mechanical Science and Technology,2004,18(11): 2021-2031.
    [7] ABERBETHY R B,ROBERT J. In-flight thrust determination[R]. SAE-AIR-1703,1985.
    [8] LIM S K,ROH T S,HONG Y S,et al. Study of windmilling characteristics of twin-spool turbo-fan engines[R]. AIAA-2002-0376,2002.
    [9] ZACHOS P K. Modelling and analysis of turbofan engines under windmilling conditions[J]. Journal of Propulsion and Power,2013,29(4): 882-890. doi: 10.2514/1.B34729
    [10] TOMS C F, BROWN D G,COLLINGBOURNE J R. Approximate estimation of drag of windmilling propellers[R]. Paris:The Royal Aeronautical Society: 2010.
    [11] 刘志友,侯敏杰,文刚. 航空发动机风车阻力的试验确定[J]. 航空动力学报,2006,21(2): 391-395. LIU Zhiyou,HOU Minjie,WEN Gang. Experimental determination of aero-engine windmilling drag[J]. Journal of Aerospace Power,2006,21(2): 391-395. (in Chinese doi: 10.3969/j.issn.1000-8055.2006.02.028

    LIU Zhiyou, HOU Minjie, WEN Gang. Experimental determination of aero-engine windmilling drag[J]. Journal of Aerospace Power, 2006, 21(2): 391-395. (in Chinese) doi: 10.3969/j.issn.1000-8055.2006.02.028
    [12] 高扬,李密,高磊. 基于相似原理的风车状态进口空气流量和内阻力估算方法[J]. 航空发动机,2018,44(2): 98-102. GAO Yang,LI Mi,GAO Lei. Estimation method of windmilling inlet air flow and internal drag based on similarity principle[J]. Aeroengine,2018,44(2): 98-102. (in Chinese

    GAO Yang, LI Mi, GAO Lei. Estimation method of windmilling inlet air flow and internal drag based on similarity principle[J]. Aeroengine, 2018, 44(2): 98-102. (in Chinese)
    [13] 王占学,刘增文. 某型燃气涡轮发动机风车状态内阻力的计算[J]. 燃气涡轮试验与研究,2006,19(3): 8-10,52. WANG Zhanxue,LIU Zengwen. The calculation of windmilling characteristics of a gas turbine engine[J]. Gas Turbine Experiment and Research,2006,19(3): 8-10,52. (in Chinese doi: 10.3969/j.issn.1672-2620.2006.03.003

    WANG Zhanxue, LIU Zengwen. The calculation of windmilling characteristics of a gas turbine engine[J]. Gas Turbine Experiment and Research, 2006, 19(3): 8-10, 52. (in Chinese) doi: 10.3969/j.issn.1672-2620.2006.03.003
    [14] 张绍基. 涡扇发动机空中风车起动特性分析[J]. 航空发动机,2004,30(4): 1-3,9. ZHANG Shaoji. Analysis of windmilling start characteristics for a typical turbofan engine[J]. Aeroengine,2004,30(4): 1-3,9. (in Chinese doi: 10.3969/j.issn.1672-3147.2004.04.001

    ZHANG Shaoji. Analysis of windmilling start characteristics for a typical turbofan engine[J]. Aeroengine, 2004, 30(4): 1-3, 9. (in Chinese) doi: 10.3969/j.issn.1672-3147.2004.04.001
    [15] 万照云. 微型涡轮喷气发动机风车起动特性研究[J]. 航空发动机,2016,42(6): 30-35. WAN Zhaoyun. Study on micro turboengine windmill starting characteristics[J]. Aeroengine,2016,42(6): 30-35. (in Chinese

    WAN Zhaoyun. Study on micro turboengine windmill starting characteristics[J]. Aeroengine, 2016, 42(6): 30-35. (in Chinese)
    [16] 王定奇,屈霁云,李密. 基于拼接网格的孤立螺旋桨特性研究[J]. 飞行力学,2019,37(3): 87-92. WANG Dingqi,QU Jiyun,LI Mi. Research on the isolated propeller characteristics based on patched-grid[J]. Flight Dynamics,2019,37(3): 87-92. (in Chinese

    WANG Dingqi, QU Jiyun, LI Mi. Research on the isolated propeller characteristics based on patched-grid[J]. Flight Dynamics, 2019, 37(3): 87-92. (in Chinese)
    [17] 王定奇,屈霁云,刘雨. 基于CFD的螺旋桨拉力确定方法[J]. 航空发动机,2020,46(3): 20-24. WANG Dingqi,QU Jiyun,LIU Yu. Determination method of propeller thrust based on CFD[J]. Aeroengine,2020,46(3): 20-24. (in Chinese

    WANG Dingqi, QU Jiyun, LIU Yu. Determination method of propeller thrust based on CFD[J]. Aeroengine, 2020, 46(3): 20-24. (in Chinese)
    [18] 乔宇航,马东立,李陟. 螺旋桨/机翼相互干扰的非定常数值模拟[J]. 航空动力学报,2015,30(6): 1366-1373. QIAO Yuhang,MA Dongli,LI Zhi. Unsteady numerical simulation of propeller/wing interaction[J]. Journal of Aerospace Power,2015,30(6): 1366-1373. (in Chinese

    QIAO Yuhang, MA Dongli, LI Zhi. Unsteady numerical simulation of propeller/wing interaction[J]. Journal of Aerospace Power, 2015, 30(6): 1366-1373. (in Chinese)
    [19] 许和勇,叶正寅. 螺旋桨非定常滑流数值模拟[J]. 航空动力学报,2011,26(1): 148-153. XU Heyong,YE Zhengyin. Numerical simulation of unsteady propeller slipstream[J]. Journal of Aerospace Power,2011,26(1): 148-153. (in Chinese

    XU Heyong, YE Zhengyin. Numerical simulation of unsteady propeller slipstream[J]. Journal of Aerospace Power, 2011, 26(1): 148-153. (in Chinese)
    [20] 麻蓉,高飞飞,颜洪,等. 螺旋桨飞机滑流非定常数值模拟研究[J]. 航空计算技术,2016,46(1): 27-30. MA Rong,GAO Feifei,YAN Hong,et al. Research on unsteady numerical simulation of propeller aircraft slipstream[J]. Aeronautical Computing Technique,2016,46(1): 27-30. (in Chinese doi: 10.3969/j.issn.1671-654X.2016.01.007

    MA Rong, GAO Feifei, YAN Hong, et al. Research on unsteady numerical simulation of propeller aircraft slipstream[J]. Aeronautical Computing Technique, 2016, 46(1): 27-30. (in Chinese) doi: 10.3969/j.issn.1671-654X.2016.01.007
    [21] ROBERT A,GERRY A. Propeller/propfan in-flight thrust determination[R]. SAE AIR 4065A,2012.
  • 加载中
图(19) / 表(4)
计量
  • 文章访问数:  307
  • HTML浏览量:  43
  • PDF量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-16
  • 网络出版日期:  2024-08-13

目录

    /

    返回文章
    返回