Research on analysis method of propeller windmill characteristics
-
摘要:
以某螺旋桨为研究对象,针对螺旋桨稳态时高速风车特性、低速风车特性和空中起动过程中瞬态风车特性,开展了不同飞行高度、真速、桨叶角及转速的仿真计算。定量给出了螺旋桨不同状态点的风车阻力,通过风洞试验进行验证,最大误差为4.63%。通过对标准螺旋桨特性中效用因子和零升迎角的修正,给出理论计算的螺旋桨特性。对仿真和理论计算结果采用数据融合方法给出螺旋桨风车特性最优解。结果表明:高速风车时,螺旋桨转速达到最大
1078 r/min,在真速为480 km/h时,桨叶角为30°,拉力系数为−0.36;低速风车时,桨叶角在限动角为14°,来流为350 km/h时,转速为990 r/min,拉力系数为−0.47;起动过程中螺旋桨转速增大,桨叶角减小,风车阻力先增大后减小,回桨至14°,转速为970 r/min,瞬态风车阻力为−2150 kg。螺旋桨风车特性的获取为某型涡桨发动机试飞中风车阻力的确定及试验点规划提供技术支撑。Abstract:Taking a type of propeller as the research object, based on the characteristics of high-speed windmill and low-speed windmill in the steady state of the propeller and the characteristics of transient windmill during air start process, simulation calculations of different altitudes, true speeds, blade angles and rotating speeds were carried out. The windmill resistance of the propeller at different test conditions was given quantitatively. Through verification of the key points of the scaled-down model wind tunnel, the maximum error was 4.63%. Through correction of the utility factor and the zero-lift angle of attack in the standard propeller characteristics, the propeller characteristics were calculated iteratively. Based on the simulation and iterative calculation results, the data fusion method was used to put forward the optimal solution of the propeller windmill characteristics. The result showed that: for high-speed windmill, the propeller speed reached the maximum limits value; at true speed of 480 km/h, the blade angle was 30°, and coefficient of thrust was −0.36. For low-speed windmill, the blade angle was at limited angle; at the true speed of 350 km/h, the rotating speed was 990 r/min, and coefficient of thrust was −0.47. During the starting process, the resistance of the propeller windmill first increased and then decreased. When blade angle returned to 14°, the rotating speed was 970 r/min and the thrust was −
2150 kg. Acquisition of the characteristics of the propeller windmill could provide a technical support for the determination of windmill resistance and the planning of test points in a certain turboprop engine flight test. -
$ {C_{T350}} $ 标准桨拉力系数 $ {C_T} $ 拉力系数 $ {C_{P350}} $ 标准桨功率系数 $ {C_P} $ 功率系数 $ { ( {{\theta _{0.7}}} ) _{350}} $/(°) 标准桨桨叶角 $ {\theta _{0.7}} $/(°) 桨叶角 $ J $ 前进比 Hp/m 飞行高度 N/(r/min) 发动机转速 n/(r/s) 螺旋桨转速 D/m 螺旋桨直径 $ \rho $/(kg/m3) 大气密度 $ {V_{\text{t}}} $/(km/h) 飞行真速 $ {V_{\text{i}}} $/(km/h) 飞行表速 表 1 孤立螺旋桨网格无关性验证
Table 1. Grid independence verification of isolated propeller
网格/104 CT 误差/% CFD 风洞试验 300 0.4064 − 0.4310 5.70 500 0.4110 − 0.4310 4.63 800 0.4114 − 0.4310 4.61 表 2 数值仿真与风洞试验结果对比
Table 2. Comparison between numerical simulation and wind tunnel test
螺旋桨状态 J $ \theta $/(°) CT CP 误差/% CFD 风洞试验 CFD 风洞试验 CT CP 低速风车 1.23 14 −0.312 −0.327 −0.133 −0.141 2.96 3.58 高速风车 2.15 30 −0.338 −0.351 −0.379 −0.394 3.70 3.74 瞬态风车 2.74 35 −0.411 −0.431 −0.504 −0.522 4.61 4.55 表 3 指示空速与真速
Table 3. Indicate speed compared to true speed
Hp/m Vi/(km/h) Vt/(km/h) 3000 300~330 330~363 4000 300~330 365~401 6000 300~330 405~445 8000 300~330 452~496 -
[1] 王占学,王永杰,乔渭阳,等. 涡扇发动机低转速部件特性扩展和风车状态性能模拟[J]. 推进技术,2006,27(2): 146-149,181. WANG Zhanxue,WANG Yongjie,QIAO Weiyang,et al. Extrapolating component maps into the low speed and simulation of windmilling performance of turbofan engine[J]. Journal of Propulsion Technology,2006,27(2): 146-149,181. (in Chinese doi: 10.3321/j.issn:1001-4055.2006.02.012WANG Zhanxue, WANG Yongjie, QIAO Weiyang, et al. Extrapolating component maps into the low speed and simulation of windmilling performance of turbofan engine[J]. Journal of Propulsion Technology, 2006, 27(2): 146-149, 181. (in Chinese) doi: 10.3321/j.issn:1001-4055.2006.02.012 [2] 刘沛清. 空气螺旋桨理论及其应用[M]. 北京: 北京航空航天大学出版社,2006: 59-66. LIU Peiqing. Air propeller theory and its application[M]. Beijing: Beijing University of Aeronautics & Astronautics Press,2006: 59-66. (in ChineseLIU Peiqing. Air propeller theory and its application[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 2006: 59-66. (in Chinese) [3] 周辉华. 国外涡桨发动机的发展[J]. 航空科学技术,2013,24(1): 18-22. ZHOU Huihua. The development prospect of turbo-propeller engines[J]. Aeronautical Science & Technology,2013,24(1): 18-22. (in Chinese doi: 10.3969/j.issn.1007-5453.2013.01.006ZHOU Huihua. The development prospect of turbo-propeller engines[J]. Aeronautical Science & Technology, 2013, 24(1): 18-22. (in Chinese) doi: 10.3969/j.issn.1007-5453.2013.01.006 [4] 范洁川. 风洞试验手册[M]. 北京: 航空工业出版社,2002. FAN Jiechuan. Handbook of wind tunnel test[M]. Beijing: Aviation Industry Press,2002. (in ChineseFAN Jiechuan. Handbook of wind tunnel test[M]. Beijing: Aviation Industry Press, 2002. (in Chinese) [5] BRAIG W,SCHULTE H,RIEGLER C. Comparative analysis of the windmilling performance of turbojet and tbrbofan engines[J]. Journal of Propulsion and Power,1999,15(2): 326-333. doi: 10.2514/2.5430 [6] SU Y I , JIN S S , SHIK L J. Windmilling characteristics of centrifugal-flow turbojets[J]. Journal of Mechanical Science and Technology,2004,18(11): 2021-2031. [7] ABERBETHY R B,ROBERT J. In-flight thrust determination[R]. SAE-AIR-1703,1985. [8] LIM S K,ROH T S,HONG Y S,et al. Study of windmilling characteristics of twin-spool turbo-fan engines[R]. AIAA-2002-0376,2002. [9] ZACHOS P K. Modelling and analysis of turbofan engines under windmilling conditions[J]. Journal of Propulsion and Power,2013,29(4): 882-890. doi: 10.2514/1.B34729 [10] TOMS C F, BROWN D G,COLLINGBOURNE J R. Approximate estimation of drag of windmilling propellers[R]. Paris:The Royal Aeronautical Society: 2010. [11] 刘志友,侯敏杰,文刚. 航空发动机风车阻力的试验确定[J]. 航空动力学报,2006,21(2): 391-395. LIU Zhiyou,HOU Minjie,WEN Gang. Experimental determination of aero-engine windmilling drag[J]. Journal of Aerospace Power,2006,21(2): 391-395. (in Chinese doi: 10.3969/j.issn.1000-8055.2006.02.028LIU Zhiyou, HOU Minjie, WEN Gang. Experimental determination of aero-engine windmilling drag[J]. Journal of Aerospace Power, 2006, 21(2): 391-395. (in Chinese) doi: 10.3969/j.issn.1000-8055.2006.02.028 [12] 高扬,李密,高磊. 基于相似原理的风车状态进口空气流量和内阻力估算方法[J]. 航空发动机,2018,44(2): 98-102. GAO Yang,LI Mi,GAO Lei. Estimation method of windmilling inlet air flow and internal drag based on similarity principle[J]. Aeroengine,2018,44(2): 98-102. (in ChineseGAO Yang, LI Mi, GAO Lei. Estimation method of windmilling inlet air flow and internal drag based on similarity principle[J]. Aeroengine, 2018, 44(2): 98-102. (in Chinese) [13] 王占学,刘增文. 某型燃气涡轮发动机风车状态内阻力的计算[J]. 燃气涡轮试验与研究,2006,19(3): 8-10,52. WANG Zhanxue,LIU Zengwen. The calculation of windmilling characteristics of a gas turbine engine[J]. Gas Turbine Experiment and Research,2006,19(3): 8-10,52. (in Chinese doi: 10.3969/j.issn.1672-2620.2006.03.003WANG Zhanxue, LIU Zengwen. The calculation of windmilling characteristics of a gas turbine engine[J]. Gas Turbine Experiment and Research, 2006, 19(3): 8-10, 52. (in Chinese) doi: 10.3969/j.issn.1672-2620.2006.03.003 [14] 张绍基. 涡扇发动机空中风车起动特性分析[J]. 航空发动机,2004,30(4): 1-3,9. ZHANG Shaoji. Analysis of windmilling start characteristics for a typical turbofan engine[J]. Aeroengine,2004,30(4): 1-3,9. (in Chinese doi: 10.3969/j.issn.1672-3147.2004.04.001ZHANG Shaoji. Analysis of windmilling start characteristics for a typical turbofan engine[J]. Aeroengine, 2004, 30(4): 1-3, 9. (in Chinese) doi: 10.3969/j.issn.1672-3147.2004.04.001 [15] 万照云. 微型涡轮喷气发动机风车起动特性研究[J]. 航空发动机,2016,42(6): 30-35. WAN Zhaoyun. Study on micro turboengine windmill starting characteristics[J]. Aeroengine,2016,42(6): 30-35. (in ChineseWAN Zhaoyun. Study on micro turboengine windmill starting characteristics[J]. Aeroengine, 2016, 42(6): 30-35. (in Chinese) [16] 王定奇,屈霁云,李密. 基于拼接网格的孤立螺旋桨特性研究[J]. 飞行力学,2019,37(3): 87-92. WANG Dingqi,QU Jiyun,LI Mi. Research on the isolated propeller characteristics based on patched-grid[J]. Flight Dynamics,2019,37(3): 87-92. (in ChineseWANG Dingqi, QU Jiyun, LI Mi. Research on the isolated propeller characteristics based on patched-grid[J]. Flight Dynamics, 2019, 37(3): 87-92. (in Chinese) [17] 王定奇,屈霁云,刘雨. 基于CFD的螺旋桨拉力确定方法[J]. 航空发动机,2020,46(3): 20-24. WANG Dingqi,QU Jiyun,LIU Yu. Determination method of propeller thrust based on CFD[J]. Aeroengine,2020,46(3): 20-24. (in ChineseWANG Dingqi, QU Jiyun, LIU Yu. Determination method of propeller thrust based on CFD[J]. Aeroengine, 2020, 46(3): 20-24. (in Chinese) [18] 乔宇航,马东立,李陟. 螺旋桨/机翼相互干扰的非定常数值模拟[J]. 航空动力学报,2015,30(6): 1366-1373. QIAO Yuhang,MA Dongli,LI Zhi. Unsteady numerical simulation of propeller/wing interaction[J]. Journal of Aerospace Power,2015,30(6): 1366-1373. (in ChineseQIAO Yuhang, MA Dongli, LI Zhi. Unsteady numerical simulation of propeller/wing interaction[J]. Journal of Aerospace Power, 2015, 30(6): 1366-1373. (in Chinese) [19] 许和勇,叶正寅. 螺旋桨非定常滑流数值模拟[J]. 航空动力学报,2011,26(1): 148-153. XU Heyong,YE Zhengyin. Numerical simulation of unsteady propeller slipstream[J]. Journal of Aerospace Power,2011,26(1): 148-153. (in ChineseXU Heyong, YE Zhengyin. Numerical simulation of unsteady propeller slipstream[J]. Journal of Aerospace Power, 2011, 26(1): 148-153. (in Chinese) [20] 麻蓉,高飞飞,颜洪,等. 螺旋桨飞机滑流非定常数值模拟研究[J]. 航空计算技术,2016,46(1): 27-30. MA Rong,GAO Feifei,YAN Hong,et al. Research on unsteady numerical simulation of propeller aircraft slipstream[J]. Aeronautical Computing Technique,2016,46(1): 27-30. (in Chinese doi: 10.3969/j.issn.1671-654X.2016.01.007MA Rong, GAO Feifei, YAN Hong, et al. Research on unsteady numerical simulation of propeller aircraft slipstream[J]. Aeronautical Computing Technique, 2016, 46(1): 27-30. (in Chinese) doi: 10.3969/j.issn.1671-654X.2016.01.007 [21] ROBERT A,GERRY A. Propeller/propfan in-flight thrust determination[R]. SAE AIR 4065A,2012. -