留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

涡轮叶片波纹内冷通道流动传热机理研究

吴忱韩 柴军生 杨小权 丁珏 翁培奋

吴忱韩, 柴军生, 杨小权, 等. 涡轮叶片波纹内冷通道流动传热机理研究[J]. 航空动力学报, 2024, 39(8):20220073 doi: 10.13224/j.cnki.jasp.20220073
引用本文: 吴忱韩, 柴军生, 杨小权, 等. 涡轮叶片波纹内冷通道流动传热机理研究[J]. 航空动力学报, 2024, 39(8):20220073 doi: 10.13224/j.cnki.jasp.20220073
WU Chenhan, CHAI Junsheng, YANG Xiaoquan, et al. Investigation on flow and heat transfer mechanism of corrugated internal cooling channel of turbine cascades[J]. Journal of Aerospace Power, 2024, 39(8):20220073 doi: 10.13224/j.cnki.jasp.20220073
Citation: WU Chenhan, CHAI Junsheng, YANG Xiaoquan, et al. Investigation on flow and heat transfer mechanism of corrugated internal cooling channel of turbine cascades[J]. Journal of Aerospace Power, 2024, 39(8):20220073 doi: 10.13224/j.cnki.jasp.20220073

涡轮叶片波纹内冷通道流动传热机理研究

doi: 10.13224/j.cnki.jasp.20220073
基金项目: 国家自然科学基金(1210021014,12072186,91952302)
详细信息
    作者简介:

    吴忱韩(1996-),男,硕士生,主要从事叶轮机械气动热力学研究

    通讯作者:

    杨小权(1983-),男,教授、博士生导师,博士,研究方向为航空发动机流动传热数值模拟。E-mail:quanshui@shu.edu.cn

  • 中图分类号: V19

Investigation on flow and heat transfer mechanism of corrugated internal cooling channel of turbine cascades

  • 摘要:

    针对叶片强化冷却散热的关键科学问题,提出并设计了新型波纹通道冷却结构,开展了精细化数值模拟,分析冷气进口雷诺数和波纹形状参数对其传热性能的影响,研究了高雷诺数涡轮叶片波纹通道冷却结构的流动传热机理。计算结果表明:波纹通道波峰波谷的交替出现对流场有强烈扰动效果,局部表面传热系数可达光滑通道的2~3倍;同一波纹不同位置传热效果不同,在管道收缩处表面传热系数最大;波纹通道传热能力与波纹形状密切相关,在冷气进口雷诺数较大时于H/L=0.115 附近传热效果最佳。论文揭示了波纹通道强化传热的物理机制,为航空发动机叶片冷却结构设计提供技术支撑。

     

  • 图 1  Mark Ⅱ叶片模型

    Figure 1.  Model of Mark Ⅱ cascades

    图 2  Mark Ⅱ叶片网格

    Figure 2.  Grid of Mark Ⅱ cascades

    图 3  网格无关性验证

    Figure 3.  Grid independence validation

    图 4  叶片中径处表面压力

    Figure 4.  Surface pressure at the mid-span of cascades

    图 5  叶片中径处表面温度

    Figure 5.  Surface temperature at the mid-span of cascades

    图 6  叶片中径处表面传热系数

    Figure 6.  h at the mid-span of cascades

    图 7  冷却通道中径处努塞尔数分布

    Figure 7.  Nusselt number at the mid-span of cooling channel

    图 8  正弦波纹管模型

    Figure 8.  Model of sinusoidal corrugated channel

    图 9  带波纹通道Mark Ⅱ叶片网格

    Figure 9.  Grid of Mark Ⅱ cascades with corrugated channel

    图 10  原叶片内部温度分布

    Figure 10.  Internal temperature distribution of original cascades

    图 11  新叶片内部温度分布

    Figure 11.  Internal temperature distribution of new cascades

    图 12  波纹通道流速分布

    Figure 12.  Flow velocity distribution of corrugated channel

    图 13  波纹通道温度分布

    Figure 13.  Temperature distribution of corrugated channel

    图 14  冷却通道沿程表面传热系数

    Figure 14.  h along the cooling channel

    图 15  不同雷诺数下通道表面传热系数

    Figure 15.  Heat transfer coefficient of different Re

    图 16  不同H/L下通道表面传热系数

    Figure 16.  h of different H/L

    图 17  波纹通道流线

    Figure 17.  Streamline of corrugated channel

    图 18  通道努赛尔数与H/L的关系

    Figure 18.  Relationship between Nu and H/L of the channel

    图 19  通道阻力系数与H/L的关系

    Figure 19.  Relationship between f and H/L of the channel

    表  1  冷却通道进口条件

    Table  1.   Inlet conditions of cooling channel

    编号 直径/mm 流量/(kg/s) 入口温度/K
    1 6.30 0.0246 326
    2 6.30 0.0237 316
    3 6.30 0.0238 322
    4 6.30 0.0247 328
    5 6.30 0.0233 308
    6 6.30 0.0228 305
    7 6.30 0.0238 313
    8 3.10 0.0078 335
    9 3.10 0.0051 330
    10 1.98 0.0033 354
    下载: 导出CSV

    表  2  波纹通道几何参数

    Table  2.   Parameters of corrugated channel

    波形 L/mm H/mm H/L
    1 3.81 0.26 0.067
    2 3.81 0.38 0.100
    3 3.81 0.44 0.115
    4 3.81 0.50 0.133
    5 3.81 0.65 0.167
    6 3.81 0.76 0.200
    下载: 导出CSV

    表  3  叶片内部温度对比

    Table  3.   Comparison of internal temperature of cascades

    Re/105 原叶片/K 新叶片/K 温降/K
    0.8 579 543 36
    1.2 551 513 38
    1.6 530 492 38
    2.0 514 478 36
    2.4 502 469 33
    下载: 导出CSV
  • [1] 朱惠人,张丽,郭涛,等. 高温透平叶片的传热与冷却[M]. 西安: 西安交通大学出版社,2017. ZHU Huiren,ZHANG Li,GUO Tao,et al. Heat transfer and cooling of high temperature turbine blades[M]. Xi’an: Xi’an Jiaotong University Press,2017. (in Chinese

    ZHU Huiren, ZHANG Li, GUO Tao, et al. Heat transfer and cooling of high temperature turbine blades[M]. Xi’an: Xi’an Jiaotong University Press, 2017. (in Chinese)
    [2] HAN J C. Heat transfer and friction in channels with two opposite rib-roughened walls[J]. Journal of Heat Transfer,1984,106(4): 774-781. doi: 10.1115/1.3246751
    [3] HAN J C. Advanced cooling in gas turbines 2016 max Jakob memorial award paper[J]. Journal of Heat Transfer,2018,140(11): 113001. doi: 10.1115/1.4039644
    [4] KAEWCHOOTHONG N,MALIWAN K,TAKEISHI K,et al. Effect of inclined ribs on heat transfer coefficient in stationary square channel[J]. Theoretical and Applied Mechanics Letters,2017,7(6): 344-350. doi: 10.1016/j.taml.2017.09.013
    [5] JANSANGSUK D,KHANOKNAIYAKARN C,PROMVONGE P. Experimental study on heat transfer and pressure drop in a channel with triangular V-ribs[C]//Proceedings of the International Conference on Energy and Sustainable Development: Issues and Strategies. Piscataway,US: IEEE,2010: 1-8.
    [6] 王顺斌,张丽,赵曙,等. 旋转状态下S型带肋通道流动特性数值研究[J]. 航空动力学报,2015,30(7): 1583-1591. WANG Shunbin,ZHANG Li,ZHAO Shu,et al. Numerical study of flow characteristics in rotating S-shaped passage with ribs[J]. Journal of Aerospace Power,2015,30(7): 1583-1591. (in Chinese

    WANG Shunbin, ZHANG Li, ZHAO Shu, et al. Numerical study of flow characteristics in rotating S-shaped passage with ribs[J]. Journal of Aerospace Power, 2015, 30(7): 1583-1591. (in Chinese)
    [7] 施锦程,胡颂军,由儒全,等. 旋转带肋直通道湍流流动TR-PIV实验[J]. 航空动力学报,2021,36(1): 53-60. SHI Jincheng,HU Songjun,YOU Ruquan,et al. Experiment of turbulent flow in rotating ribbed channel with TR-PIV[J]. Journal of Aerospace Power,2021,36(1): 53-60. (in Chinese

    SHI Jincheng, HU Songjun, YOU Ruquan, et al. Experiment of turbulent flow in rotating ribbed channel with TR-PIV[J]. Journal of Aerospace Power, 2021, 36(1): 53-60. (in Chinese)
    [8] METZGER D E,BERRY R A,BRONSON J P. Developing heat transfer in rectangular ducts with staggered arrays of short pin fins[J]. Journal of Heat Transfer,1982,104(4): 700-706. doi: 10.1115/1.3245188
    [9] 王奉明,雷友锋,赵阳阳. 不同形状扰流柱群通道换热特性研究[J]. 工程热物理学报,2014,35(3): 480-484. WANG Fengming,LEI Youfeng,ZHAO Yangyang. Study of heat transfer characteristics inside rectangular channel with different pin fins[J]. Journal of Engineering Thermophysics,2014,35(3): 480-484. (in Chinese

    WANG Fengming, LEI Youfeng, ZHAO Yangyang. Study of heat transfer characteristics inside rectangular channel with different pin fins[J]. Journal of Engineering Thermophysics, 2014, 35(3): 480-484. (in Chinese)
    [10] CHYU M K,SIW S C,MOON H K. Effects of height-to-diameter ratio of pin element on heat transfer from staggered pin-fin arrays: GT2009-59814 [R]. Orlando ,US: ASME,2010.
    [11] 白万栋,梁栋,陈伟,等. 非等直径柱肋阵列的冷却特性[J]. 航空动力学报,2021,36(3): 626-633. BAI Wandong,LIANG Dong,CHEN Wei,et al. Cooling characteristics of pin-fin arrays with non-uniform diameters[J]. Journal of Aerospace Power,2021,36(3): 626-633. (in Chinese

    BAI Wandong, LIANG Dong, CHEN Wei, et al. Cooling characteristics of pin-fin arrays with non-uniform diameters[J]. Journal of Aerospace Power, 2021, 36(3): 626-633. (in Chinese)
    [12] OSTANEK J K,THOLE K A. Effects of varying streamwise and spanwise spacing in pin-fin arrays: GT2012-68127[R]. Copenhagen,Denmark: ASME,2013.
    [13] HAN J C. Fundamental gas turbine heat transfer[J]. Journal of Thermal Science and Engineering Applications,2013,5(2): 021007. doi: 10.1115/1.4023826
    [14] MAHMOOD G I,HILL M L,NELSON D,et al. Local heat transfer and flow structure on and above a dimpled surface in a channel: 2000-GT-0230 [R]. Munich,Germany: ASME,2000.
    [15] RAO Yu,FENG Yan,LI Bo,et al. Experimental and numerical study of heat transfer and flow friction in channels with dimples of different shapes[J]. Journal of Heat Transfer,2015,137(3): 031901. doi: 10.1115/1.4029036
    [16] BURGESS N K,LIGRANI P M. Effects of dimple depth on channel nusselt numbers and friction factors[J]. Journal of Heat Transfer,2005,127(8): 839-847. doi: 10.1115/1.1994880
    [17] SHEN Zhongyang,XIE Yonghui,ZHANG Di. Numerical predictions on fluid flow and heat transfer in U-shaped channel with the combination of ribs,dimples and protrusions under rotational effects[J]. International Journal of Heat and Mass Transfer,2015,80: 494-512. doi: 10.1016/j.ijheatmasstransfer.2014.09.057
    [18] HAN B,GOLDSTEIN R J. Jet-impingement heat transfer in gas turbine systems[J]. Annals of the New York Academy of Sciences,2001,934: 147-161. doi: 10.1111/j.1749-6632.2001.tb05849.x
    [19] JANG J,CHIU H,YAN W. Impinging cooling of film hole surface using transient liquid crystal thermograph[J]. International Communications in Heat and Mass Transfer,2013,44: 23-30. doi: 10.1016/j.icheatmasstransfer.2013.03.009
    [20] 韦宏,祖迎庆. 双层壁冷却结构中多排射流冲击冷却的换热和流阻特性[J]. 航空动力学报,2021,36(8): 1621-1632. WEI Hong,ZU Yingqing. Heat transfer and flow resistance characteristics of multi-row jet impingement cooling in double-wall cooling structure[J]. Journal of Aerospace Power,2021,36(8): 1621-1632. (in Chinese

    WEI Hong, ZU Yingqing. Heat transfer and flow resistance characteristics of multi-row jet impingement cooling in double-wall cooling structure[J]. Journal of Aerospace Power, 2021, 36(8): 1621-1632. (in Chinese)
    [21] 吕元伟,张靖周,单勇,等. 冠齿喷管射流冲击半圆形靶面的对流换热[J]. 航空学报,2021,42(7): 124762. LYU Yuanwei,ZHANG Jingzhou,SHAN Yong,et al. Convective heat transfer of chevron-nozzle jet impingement on semi-circular surfaces[J]. Acta Aeronautica et Astronautica Sinica,2021,42(7): 124762. (in Chinese

    LYU Yuanwei, ZHANG Jingzhou, SHAN Yong, et al. Convective heat transfer of chevron-nozzle jet impingement on semi-circular surfaces[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 124762. (in Chinese)
    [22] KAREEM Z S,MOHD JAAFAR M N,LAZIM T M,et al. Passive heat transfer enhancement review in corrugation[J]. Experimental Thermal and Fluid Science,2015,68: 22-38. doi: 10.1016/j.expthermflusci.2015.04.012
    [23] 王大成,陈朗,罗小平. 影响波纹换热管换热性能因素的数值模拟研究[J]. 低温与超导,2012,40(7): 54-58. WANG Dacheng,CHEN Lang,LUO Xiaoping. Numerical simulation research on the factors influencing the heat exchange performance of corrugated tubes[J]. Cryogenics & Superconductivity,2012,40(7): 54-58. (in Chinese

    WANG Dacheng, CHEN Lang, LUO Xiaoping. Numerical simulation research on the factors influencing the heat exchange performance of corrugated tubes[J]. Cryogenics & Superconductivity, 2012, 40(7): 54-58. (in Chinese)
    [24] 肖金花,钱才富,黄志新. 波纹管传热强化效果与机理研究[J]. 化学工程,2007,35(1): 12-15. XIAO Jinhua,QIAN Caifu,HUANG Zhixin. Study of effects and mechanisms of heat transfer enhancement of corrugated tubes[J]. Chemical Engineering (China),2007,35(1): 12-15. (in Chinese

    XIAO Jinhua, QIAN Caifu, HUANG Zhixin. Study of effects and mechanisms of heat transfer enhancement of corrugated tubes[J]. Chemical Engineering (China), 2007, 35(1): 12-15. (in Chinese)
    [25] HYLTON L D,MIHELC M S,TURNER E,et al. Analytical and experimental evaluation of the heat transfer distribution over the surfaces of turbine vanes[R]. NASA CR 168015,1983.
    [26] 董平. 航空发动机气冷涡轮叶片的气热耦合数值模拟研究[D]. 哈尔滨: 哈尔滨工业大学,2009. DONG Ping. Research on conjugate heat transfer simulation of aero turbine engine air-cooled vane[D]. Harbin: Harbin Institute of Technology,2009. (in Chinese

    DONG Ping. Research on conjugate heat transfer simulation of aero turbine engine air-cooled vane[D]. Harbin: Harbin Institute of Technology, 2009. (in Chinese)
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  41
  • HTML浏览量:  23
  • PDF量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-18
  • 网络出版日期:  2024-03-20

目录

    /

    返回文章
    返回