Research on the vortex breakdown and pressure loss characteristics in the cavity with anti-swirling waist circular drum hole
-
摘要:
为降低压气机径向引气过程中的压损,本文设计了反旋腰圆形鼓筒孔结构,采用大涡模拟(LES)和经验证的RNG
k -ε 模型分别探究了腔体内的旋涡演化规律和压损特性,揭示了反旋腰圆形鼓筒孔的旋涡破碎机制与减阻机理。结果表明:反旋腰圆形鼓筒孔可降低腔体内压损。高速旋涡在腰圆形鼓筒孔腔体的低径位区域内快速强化,旋涡尺度呈快速增大趋势,致使压损系数随径向高度降低而快速升高。与腰圆形鼓筒孔相比,反旋腰圆形鼓筒孔可有效抑制旋涡尺度增大,相对可降低腔体内15.6%的压损。反旋腰圆形鼓筒孔结构简单且引气过程呈线性状态,具有较高工程应用价值。Abstract:To reduce the pressure loss in a compressor disk cavity, an anti-swirling waist circular drum hole structure was designed. Large Eddy simulation (LES) and the RNG
k -ε model were used to investigate the vortex evolution and pressure loss characteristics in the cavity, respectively, revealing the vortex breakdown mechanism and drag reduction mechanism of the anti-swirling waist circular drum hole. The results showed that the anti-swirling waist circular drum hole can reduce the pressure loss in the cavity. The high-speed vortex was intensified rapidly in the low region of the cavity with waist circular drum, and the vortex scale increased rapidly, resulting in the rapid increase of pressure loss coefficient with the radial height decrease. Compared with the waist circular drum hole, the anti-swirling waist circular drum hole can effectively restrain the vortex scale increase and reduce the pressure loss in the cavity by 15.6%. With simple structure and linear airflow characteristic, the anti-swirling waist circular drum hole has high engineering application value.-
Key words:
- co-rotating cavity /
- drum hole /
- coherent vortex /
- vortex scale /
- pressure loss
-
表 1 无量纲尺寸参数
Table 1. Dimensionless dimension parameters
参数 数值 a/c 0.329 b/c 0.933 S/c 0.243 d1/c 0.029 d2/c 0.019 r/c 0.014 表 2 质量流量的影响
Table 2. Influence of mass flow rate
参数 数值 质量流量/(kg/s) 0.225,0.375,0.525,0.675,0.825,
0.975,1.125,1.275,1.425转速/(r/min) 16000 -
[1] 夏子龙,王锁芳,麻丽春,等. 压气机引气系统典型减涡器减阻特性对比分析[J]. 推进技术,2021,42(1): 114-122. XIA Zilong,WANG Suofang,MA Lichun,et al. Comparative analysis of flow resistance reduction characteristics of typical vortex reducers in compressor bleed air system[J]. Journal of Propulsion Technology,2021,42(1): 114-122. (in ChineseXIA Zilong, WANG Suofang, MA Lichun, et al. Comparative analysis of flow resistance reduction characteristics of typical vortex reducers in compressor bleed air system[J]. Journal of Propulsion Technology, 2021, 42(1): 114-122. (in Chinese) [2] FARTHING P R,CHEW J W,OWEN J M. The use of de-swirl nozzles to reduce the pressure drop in a rotating cavity with a radial inflow[J]. Journal of Turbomachinery,1989,113(1): 106-114. [3] FARTHING P R,OWEN J M. De-swirled radial inflow in a rotating cavity[J]. International Journal of Heat and Fluid Flow,1991,12: 63-70. doi: 10.1016/0142-727X(91)90009-K [4] NEGULESCU D,PFITZNER M. Secondary air systems in aeroengines employing vortex reducers[R]. New Orieans: Proceeding of ASME Turbo Expo,2001. [5] WEI Song,YAN Jiaxi,MAO Junkui,et al. A mathematical model for predicting the pressure drop in a rotating cavity with a tubed vortex reducer[J]. Engineering Applications of Computational Fluid Mechanics,2019,13(1): 664-682. doi: 10.1080/19942060.2019.1633411 [6] LIANG Zhirong,LUO Xiang,FENG Ye,et al. Experimental investigation of pressure losses in a co-rotating cavity with radial inflow employing tubed vortex reducers with varied nozzles[J]. Experimental Thermal and Fluid Science,2015,66: 304-315. doi: 10.1016/j.expthermflusci.2015.03.008 [7] 侯晓亭,王锁芳,张凯. 翅片安装高度对共转盘腔减阻特性影响的数值研究[J]. 推进技术,2020,41(7): 1457-1463. HOU Xiaoting,WANG Suofang,ZHANG Kai. Numerical investigation on effects of installation height of fins on drag reduction performance of co-rotating cavity[J]. Journal of Propulsion Technology,2020,41(7): 1457-1463. (in ChineseHOU Xiaoting, WANG Suofang, ZHANG Kai. Numerical investigation on effects of installation height of fins on drag reduction performance of co-rotating cavity[J]. Journal of Propulsion Technology, 2020, 41(7): 1457-1463. (in Chinese) [8] 侯晓亭,王锁芳,张凯,等. 新型翅片式减涡器减阻特性数值研究[J]. 推进技术,2020,41(9): 2059-2069. HOU Xiaoting,WANG Suofang,ZHANG Kai,et al. Numerical investigation on resistance reduction characteristics of new finned vortex reducer device[J]. Journal of Propulsion Technology,2020,41(9): 2059-2069. (in ChineseHOU Xiaoting, WANG Suofang, ZHANG Kai, et al. Numerical investigation on resistance reduction characteristics of new finned vortex reducer device[J]. Journal of Propulsion Technology, 2020, 41(9): 2059-2069. (in Chinese) [9] 吴丽军,陈潇,邓双国,等. 减涡器流阻特性计算分析[J]. 燃气轮机技术,2014,27(3): 37-43. WU Lijun,CHEN Xiao,DENG Shuangguo,et al. Flow resistance characteristics of vortex reducer computation and analysis[J]. Gas Turbine Technology,2014,27(3): 37-43. (in Chinese doi: 10.3969/j.issn.1009-2889.2014.03.008WU Lijun, CHEN Xiao, DENG Shuangguo, et al. Flow resistance characteristics of vortex reducer computation and analysis[J]. Gas Turbine Technology, 2014, 27(3): 37-43. (in Chinese) doi: 10.3969/j.issn.1009-2889.2014.03.008 [10] 蔡超凡,罗翔,孙平平,等. 管式减涡器压力损失特性数值研究[J]. 燃气涡轮试验与研究,2019,32(2): 49-55. CAI Chaofan,LUO Xiang,SUN Pingping,et al. Numerical study of pressure drop in tubular vortex reducer[J]. Gas Turbine Experiment and Research,2019,32(2): 49-55. (in Chinese doi: 10.3969/j.issn.1672-2620.2019.02.009CAI Chaofan, LUO Xiang, SUN Pingping, et al. Numerical study of pressure drop in tubular vortex reducer[J]. Gas Turbine Experiment and Research, 2019, 32(2): 49-55. (in Chinese) doi: 10.3969/j.issn.1672-2620.2019.02.009 [11] OWEN J M,PINCOMBE J R,ROGERS R H. Source-sink flow inside a rotating cylindrical cavity[J]. Journal of Fluid Mechanics,1985,155: 233-265. doi: 10.1017/S0022112085001793 [12] FIROUZIAN M,OWEN J M,PINCOMBE J R,et al. Flow and heat transfer in a rotating cylindrical cavity with a radial inflow of fluid[J]. International Journal of Heat and Fluid Flow,1986,7(1): 21-27. doi: 10.1016/0142-727X(86)90037-8 [13] SUN Zixiang,AMIRANTE D,CHEW J W,et al. Coupled aerothermal modeling of a rotating cavity with radial inflow[J]. Journal of Engineering for Gas Turbines and Power,2016,138(3): 032505. doi: 10.1115/1.4031387 [14] 蒋亮亮. 某导流板式减涡器及涡轮集气腔流动特性研究[D]. 南京: 南京航空航天大学,2014. JIANG Liangliang. Research on flow characteristics of turbineplenum chamber and the vortex-reducer with bafflers[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2014. (in ChineseJIANG Liangliang. Research on flow characteristics of turbineplenum chamber and the vortex-reducer with bafflers[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014. (in Chinese) [15] 夏子龙,王锁芳,侯晓亭. 导管长度对管式减涡器流阻与温降特性影响[J]. 航空动力学报,2020,35(1): 88-96. XIA Zilong,WANG Suofang,HOU Xiaoting. Influence of tube length on flow resistance and temperature reduction characteristics of tubed vortex reducer[J]. Journal of Aerospace Power,2020,35(1): 88-96. (in ChineseXIA Zilong, WANG Suofang, HOU Xiaoting. Influence of tube length on flow resistance and temperature reduction characteristics of tubed vortex reducer[J]. Journal of Aerospace Power, 2020, 35(1): 88-96. (in Chinese) [16] ONORI M,AMIRANTE D,HILLS N J,et al. LES validation for a rotating cylindrical cavity with radial inflow: GT2016-56393[R]. Seoul,Korea: ASME,2016. [17] KUMAR B G V,CHEW J W,HILLS N J. Rotating flow and heat transfer in cylindrical cavities with radial inflow: GT2012-68770[R]. Copenhagen,Denmark: ASME,2012. [18] 侯晓亭,王锁芳,张凯. 管-隔板复合式减涡器流阻特性[J]. 航空动力学报,2020,35(1): 106-113. HOU Xiaoting,WANG Suofang,ZHANG Kai. Drag reduction performance of tube-baffle composite vortex reducer[J]. Journal of Aerospace Power,2020,35(1): 106-113. (in ChineseHOU Xiaoting, WANG Suofang, ZHANG Kai. Drag reduction performance of tube-baffle composite vortex reducer[J]. Journal of Aerospace Power, 2020, 35(1): 106-113. (in Chinese) [19] 田冉冉,毛军逵,范俊,等. 反旋进气混合式减涡结构流动特性数值计算[J]. 航空动力学报,2019,34(8): 1677-1687. TIAN Ranran,MAO Junkui,FAN Jun,et al. Numerical calculation of flow characteristics of hybrid vortex reduce structure combing de-swirl inlet[J]. Journal of Aerospace Power,2019,34(8): 1677-1687. (in ChineseTIAN Ranran, MAO Junkui, FAN Jun, et al. Numerical calculation of flow characteristics of hybrid vortex reduce structure combing de-swirl inlet[J]. Journal of Aerospace Power, 2019, 34(8): 1677-1687. (in Chinese) [20] GEURTS B J,FRÖHLICH J. A framework for predicting accuracy limitations in large-eddy simulation[J]. Physics of Fluids,2002,14(6): 41-44. doi: 10.1063/1.1480830 [21] POPE S B. Turbulent flows[M]. Cambridge: Cambridge University Press,2000. -