留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

反旋腰圆形鼓筒孔腔体内旋涡破碎机制与压损特性

沈文杰 王锁芳 张馨丹

沈文杰, 王锁芳, 张馨丹. 反旋腰圆形鼓筒孔腔体内旋涡破碎机制与压损特性[J]. 航空动力学报, 2024, 39(8):20220075 doi: 10.13224/j.cnki.jasp.20220075
引用本文: 沈文杰, 王锁芳, 张馨丹. 反旋腰圆形鼓筒孔腔体内旋涡破碎机制与压损特性[J]. 航空动力学报, 2024, 39(8):20220075 doi: 10.13224/j.cnki.jasp.20220075
SHEN Wenjie, WANG Suofang, ZHANG Xindan. Research on the vortex breakdown and pressure loss characteristics in the cavity with anti-swirling waist circular drum hole[J]. Journal of Aerospace Power, 2024, 39(8):20220075 doi: 10.13224/j.cnki.jasp.20220075
Citation: SHEN Wenjie, WANG Suofang, ZHANG Xindan. Research on the vortex breakdown and pressure loss characteristics in the cavity with anti-swirling waist circular drum hole[J]. Journal of Aerospace Power, 2024, 39(8):20220075 doi: 10.13224/j.cnki.jasp.20220075

反旋腰圆形鼓筒孔腔体内旋涡破碎机制与压损特性

doi: 10.13224/j.cnki.jasp.20220075
基金项目: 国家科技重大专项(2017-Ⅲ-0011-0037)
详细信息
    作者简介:

    沈文杰(1998-),男,博士生,研究领域为航空发动机流动与冷却

    通讯作者:

    王锁芳(1962-),男,教授、博士生导师,博士,研究领域为航空发动机流动与冷却。E-mail:sfwang@nuaa.edu.cn

  • 中图分类号: V231.1

Research on the vortex breakdown and pressure loss characteristics in the cavity with anti-swirling waist circular drum hole

  • 摘要:

    为降低压气机径向引气过程中的压损,本文设计了反旋腰圆形鼓筒孔结构,采用大涡模拟(LES)和经验证的RNG k-ε模型分别探究了腔体内的旋涡演化规律和压损特性,揭示了反旋腰圆形鼓筒孔的旋涡破碎机制与减阻机理。结果表明:反旋腰圆形鼓筒孔可降低腔体内压损。高速旋涡在腰圆形鼓筒孔腔体的低径位区域内快速强化,旋涡尺度呈快速增大趋势,致使压损系数随径向高度降低而快速升高。与腰圆形鼓筒孔相比,反旋腰圆形鼓筒孔可有效抑制旋涡尺度增大,相对可降低腔体内15.6%的压损。反旋腰圆形鼓筒孔结构简单且引气过程呈线性状态,具有较高工程应用价值。

     

  • 图 1  共转腔体示意图

    Figure 1.  Schematic diagram of co-rotating cavity

    图 2  鼓筒孔示意图

    Figure 2.  Schematic diagram of drum holes

    图 3  网格示意图

    Figure 3.  Schematic of the grid

    图 4  网格独立性验证

    Figure 4.  Validation of grid independence

    图 5  模型验证

    Figure 5.  Validation of model

    图 6  腔体内亚格子活性参数的分布

    Figure 6.  Distribution of subgrid-activity parameter in the cavity

    图 7  流线与熵

    Figure 7.  Streamlines and entropy

    图 8  旋流比云图

    Figure 8.  Cloud map of swirl ratio

    图 9  相干结构

    Figure 9.  Coherent structure

    图 10  功率谱

    Figure 10.  Power spectrum

    图 11  能量积分尺度

    Figure 11.  Energy integral length scale

    图 12  径向上压损系数的分布

    Figure 12.  Pressure loss coefficient along radial direction

    图 13  不同无量纲流量下压损的变化规律

    Figure 13.  Variation law of pressure loss under different dimensionless mass flow rates

    图 14  不同区间内压损占比对比

    Figure 14.  Comparison of pressure loss in different intervals

    表  1  无量纲尺寸参数

    Table  1.   Dimensionless dimension parameters

    参数数值
    a/c0.329
    b/c0.933
    S/c0.243
    d1/c0.029
    d2/c0.019
    r/c0.014
    下载: 导出CSV

    表  2  质量流量的影响

    Table  2.   Influence of mass flow rate

    参数 数值
    质量流量/(kg/s) 0.225,0.375,0.525,0.675,0.825,
    0.975,1.125,1.275,1.425
    转速/(r/min) 16000
    下载: 导出CSV
  • [1] 夏子龙,王锁芳,麻丽春,等. 压气机引气系统典型减涡器减阻特性对比分析[J]. 推进技术,2021,42(1): 114-122. XIA Zilong,WANG Suofang,MA Lichun,et al. Comparative analysis of flow resistance reduction characteristics of typical vortex reducers in compressor bleed air system[J]. Journal of Propulsion Technology,2021,42(1): 114-122. (in Chinese

    XIA Zilong, WANG Suofang, MA Lichun, et al. Comparative analysis of flow resistance reduction characteristics of typical vortex reducers in compressor bleed air system[J]. Journal of Propulsion Technology, 2021, 42(1): 114-122. (in Chinese)
    [2] FARTHING P R,CHEW J W,OWEN J M. The use of de-swirl nozzles to reduce the pressure drop in a rotating cavity with a radial inflow[J]. Journal of Turbomachinery,1989,113(1): 106-114.
    [3] FARTHING P R,OWEN J M. De-swirled radial inflow in a rotating cavity[J]. International Journal of Heat and Fluid Flow,1991,12: 63-70. doi: 10.1016/0142-727X(91)90009-K
    [4] NEGULESCU D,PFITZNER M. Secondary air systems in aeroengines employing vortex reducers[R]. New Orieans: Proceeding of ASME Turbo Expo,2001.
    [5] WEI Song,YAN Jiaxi,MAO Junkui,et al. A mathematical model for predicting the pressure drop in a rotating cavity with a tubed vortex reducer[J]. Engineering Applications of Computational Fluid Mechanics,2019,13(1): 664-682. doi: 10.1080/19942060.2019.1633411
    [6] LIANG Zhirong,LUO Xiang,FENG Ye,et al. Experimental investigation of pressure losses in a co-rotating cavity with radial inflow employing tubed vortex reducers with varied nozzles[J]. Experimental Thermal and Fluid Science,2015,66: 304-315. doi: 10.1016/j.expthermflusci.2015.03.008
    [7] 侯晓亭,王锁芳,张凯. 翅片安装高度对共转盘腔减阻特性影响的数值研究[J]. 推进技术,2020,41(7): 1457-1463. HOU Xiaoting,WANG Suofang,ZHANG Kai. Numerical investigation on effects of installation height of fins on drag reduction performance of co-rotating cavity[J]. Journal of Propulsion Technology,2020,41(7): 1457-1463. (in Chinese

    HOU Xiaoting, WANG Suofang, ZHANG Kai. Numerical investigation on effects of installation height of fins on drag reduction performance of co-rotating cavity[J]. Journal of Propulsion Technology, 2020, 41(7): 1457-1463. (in Chinese)
    [8] 侯晓亭,王锁芳,张凯,等. 新型翅片式减涡器减阻特性数值研究[J]. 推进技术,2020,41(9): 2059-2069. HOU Xiaoting,WANG Suofang,ZHANG Kai,et al. Numerical investigation on resistance reduction characteristics of new finned vortex reducer device[J]. Journal of Propulsion Technology,2020,41(9): 2059-2069. (in Chinese

    HOU Xiaoting, WANG Suofang, ZHANG Kai, et al. Numerical investigation on resistance reduction characteristics of new finned vortex reducer device[J]. Journal of Propulsion Technology, 2020, 41(9): 2059-2069. (in Chinese)
    [9] 吴丽军,陈潇,邓双国,等. 减涡器流阻特性计算分析[J]. 燃气轮机技术,2014,27(3): 37-43. WU Lijun,CHEN Xiao,DENG Shuangguo,et al. Flow resistance characteristics of vortex reducer computation and analysis[J]. Gas Turbine Technology,2014,27(3): 37-43. (in Chinese doi: 10.3969/j.issn.1009-2889.2014.03.008

    WU Lijun, CHEN Xiao, DENG Shuangguo, et al. Flow resistance characteristics of vortex reducer computation and analysis[J]. Gas Turbine Technology, 2014, 27(3): 37-43. (in Chinese) doi: 10.3969/j.issn.1009-2889.2014.03.008
    [10] 蔡超凡,罗翔,孙平平,等. 管式减涡器压力损失特性数值研究[J]. 燃气涡轮试验与研究,2019,32(2): 49-55. CAI Chaofan,LUO Xiang,SUN Pingping,et al. Numerical study of pressure drop in tubular vortex reducer[J]. Gas Turbine Experiment and Research,2019,32(2): 49-55. (in Chinese doi: 10.3969/j.issn.1672-2620.2019.02.009

    CAI Chaofan, LUO Xiang, SUN Pingping, et al. Numerical study of pressure drop in tubular vortex reducer[J]. Gas Turbine Experiment and Research, 2019, 32(2): 49-55. (in Chinese) doi: 10.3969/j.issn.1672-2620.2019.02.009
    [11] OWEN J M,PINCOMBE J R,ROGERS R H. Source-sink flow inside a rotating cylindrical cavity[J]. Journal of Fluid Mechanics,1985,155: 233-265. doi: 10.1017/S0022112085001793
    [12] FIROUZIAN M,OWEN J M,PINCOMBE J R,et al. Flow and heat transfer in a rotating cylindrical cavity with a radial inflow of fluid[J]. International Journal of Heat and Fluid Flow,1986,7(1): 21-27. doi: 10.1016/0142-727X(86)90037-8
    [13] SUN Zixiang,AMIRANTE D,CHEW J W,et al. Coupled aerothermal modeling of a rotating cavity with radial inflow[J]. Journal of Engineering for Gas Turbines and Power,2016,138(3): 032505. doi: 10.1115/1.4031387
    [14] 蒋亮亮. 某导流板式减涡器及涡轮集气腔流动特性研究[D]. 南京: 南京航空航天大学,2014. JIANG Liangliang. Research on flow characteristics of turbineplenum chamber and the vortex-reducer with bafflers[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2014. (in Chinese

    JIANG Liangliang. Research on flow characteristics of turbineplenum chamber and the vortex-reducer with bafflers[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014. (in Chinese)
    [15] 夏子龙,王锁芳,侯晓亭. 导管长度对管式减涡器流阻与温降特性影响[J]. 航空动力学报,2020,35(1): 88-96. XIA Zilong,WANG Suofang,HOU Xiaoting. Influence of tube length on flow resistance and temperature reduction characteristics of tubed vortex reducer[J]. Journal of Aerospace Power,2020,35(1): 88-96. (in Chinese

    XIA Zilong, WANG Suofang, HOU Xiaoting. Influence of tube length on flow resistance and temperature reduction characteristics of tubed vortex reducer[J]. Journal of Aerospace Power, 2020, 35(1): 88-96. (in Chinese)
    [16] ONORI M,AMIRANTE D,HILLS N J,et al. LES validation for a rotating cylindrical cavity with radial inflow: GT2016-56393[R]. Seoul,Korea: ASME,2016.
    [17] KUMAR B G V,CHEW J W,HILLS N J. Rotating flow and heat transfer in cylindrical cavities with radial inflow: GT2012-68770[R]. Copenhagen,Denmark: ASME,2012.
    [18] 侯晓亭,王锁芳,张凯. 管-隔板复合式减涡器流阻特性[J]. 航空动力学报,2020,35(1): 106-113. HOU Xiaoting,WANG Suofang,ZHANG Kai. Drag reduction performance of tube-baffle composite vortex reducer[J]. Journal of Aerospace Power,2020,35(1): 106-113. (in Chinese

    HOU Xiaoting, WANG Suofang, ZHANG Kai. Drag reduction performance of tube-baffle composite vortex reducer[J]. Journal of Aerospace Power, 2020, 35(1): 106-113. (in Chinese)
    [19] 田冉冉,毛军逵,范俊,等. 反旋进气混合式减涡结构流动特性数值计算[J]. 航空动力学报,2019,34(8): 1677-1687. TIAN Ranran,MAO Junkui,FAN Jun,et al. Numerical calculation of flow characteristics of hybrid vortex reduce structure combing de-swirl inlet[J]. Journal of Aerospace Power,2019,34(8): 1677-1687. (in Chinese

    TIAN Ranran, MAO Junkui, FAN Jun, et al. Numerical calculation of flow characteristics of hybrid vortex reduce structure combing de-swirl inlet[J]. Journal of Aerospace Power, 2019, 34(8): 1677-1687. (in Chinese)
    [20] GEURTS B J,FRÖHLICH J. A framework for predicting accuracy limitations in large-eddy simulation[J]. Physics of Fluids,2002,14(6): 41-44. doi: 10.1063/1.1480830
    [21] POPE S B. Turbulent flows[M]. Cambridge: Cambridge University Press,2000.
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  98
  • HTML浏览量:  95
  • PDF量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-21
  • 网络出版日期:  2024-03-27

目录

    /

    返回文章
    返回