留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Kriging模型的滚动直线导轨副耐磨性优化设计

林道杰 梁医 朱燕芳 欧屹 冯虎田

林道杰, 梁医, 朱燕芳, 等. 基于Kriging模型的滚动直线导轨副耐磨性优化设计[J]. 航空动力学报, 2024, 39(8):20220078 doi: 10.13224/j.cnki.jasp.20220078
引用本文: 林道杰, 梁医, 朱燕芳, 等. 基于Kriging模型的滚动直线导轨副耐磨性优化设计[J]. 航空动力学报, 2024, 39(8):20220078 doi: 10.13224/j.cnki.jasp.20220078
LIN Daojie, LIANG Yi, ZHU Yanfang, et al. Wear optimization design of rolling linear guide based on Kriging model[J]. Journal of Aerospace Power, 2024, 39(8):20220078 doi: 10.13224/j.cnki.jasp.20220078
Citation: LIN Daojie, LIANG Yi, ZHU Yanfang, et al. Wear optimization design of rolling linear guide based on Kriging model[J]. Journal of Aerospace Power, 2024, 39(8):20220078 doi: 10.13224/j.cnki.jasp.20220078

基于Kriging模型的滚动直线导轨副耐磨性优化设计

doi: 10.13224/j.cnki.jasp.20220078
基金项目: 国家自然科学基金青年基金(51405233); 丽水经济技术开发区重点研发计划项目(2022KFQZDYF8)
详细信息
    作者简介:

    林道杰(1997-),男,硕士生,研究方向为滚动功能部件摩擦磨损性能

  • 中图分类号: V222;TP211.2

Wear optimization design of rolling linear guide based on Kriging model

More Information
    Corresponding author: 通信作者:梁医(1974−),女,副教授,硕士,主要从事一般金属零件表面的摩擦及磨损机理与规律研究。E-mail : liangyi@mail.njust.edu.cn
  • 摘要:

    为提升滚动直线导轨副耐磨性,结合导轨副摩擦磨损试验及理论分析,将最大碰撞力,最大接触应力,摩擦阻力作为导轨副耐磨性能的表征和优化目标。根据设计要求,确定滑块反力约束函数和结构参数约束范围。通过分析模型的参数灵敏度,选取初始接触角,滑块滚道曲率比,滚珠直径和导轨高度增量作为设计变量;优化使用CCRD联合Kriging响应面构建代理模型;通过NSGA-Ⅱ算法,使结构在最大接触应力仅增加4.33%的情况下,摩擦阻力降低2.09%,最大碰撞力降低15.00%。设计变量中滚珠直径由5.56 mm降低至5.1744 mm,初始接触角由45°降低至38.878°,两者变动最大。基于Spearman相关性分析,可知滚珠直径与滑块反力相关系数值为0.23,初始接触角与滑块反力系数值达到−0.82,两者在优化中相互平衡达到最优解。

     

  • 图 1  滚珠循环碰撞示意图

    Figure 1.  Schematic diagram of ball cyclic collision

    图 2  不同试验工况下滑块滚道至反向器过渡处形貌

    Figure 2.  Morphology of the slider raceway at the transition point of the inverter under different conditions

    图 3  导轨副截面尺寸

    Figure 3.  Sectional dimension of linear guide

    图 4  导轨副滚道摩擦阻力示意图

    Figure 4.  Diagram of friction resistance of linear guide raceway

    图 5  导轨副垂直受载示意图

    Figure 5.  Schematic diagram of vertical loading on linear guide

    图 6  接触角变化示意图

    Figure 6.  Schematic diagram of contact angle change

    图 7  导轨副静刚度试验图

    Figure 7.  Static stiffness test diagram of linear guide

    图 8  模型初步处理

    Figure 8.  Preliminary model processing

    图 9  剖分线示意图

    Figure 9.  Diagram of dividing line

    图 10  滚道应力分布有限元结果

    Figure 10.  FEM result of raceway stress

    图 11  Kriging响应面模型

    Figure 11.  Kriging response surface model

    图 12  优化流程

    Figure 12.  Optimize process

    表  1  有限元模型结果

    Table  1.   FEM Model results

    参数试验数据求解结果修正结果误差
    Fry2/N840015344.88439.610.5%
    下载: 导出CSV

    表  2  参数灵敏度表

    Table  2.   Parameter sensitivity table

    参数 Fm Ff σmax Fry2
    Da 0.93 0.14 −0.19 0.23
    α −0.01 −0.27 −0.18 −0.81
    G1 0 −0.05 −0.04 −0.05
    f −0.26 −0.91 0.92 −0.43
    Xa 0.28 −0.03 −0.03 −0.02
    下载: 导出CSV

    表  3  相关系数矩阵表

    Table  3.   Correlation coefficient matrix

    项目 Fry2 Fm Ff σmax
    Fry2 1 0.32 0.70 −0.23
    Fm 1 0.33 −0.40
    Ff 1 −0.75
    σmax 1
    下载: 导出CSV

    表  4  优化结果

    Table  4.   Optimization results

    项目/单位 原结果 优化结果
    σmax/MPa 2215.2 2283.6
    Ff /N 7.9009 7.3739
    Fm/N 244.36 207.33
    Da/mm 5.56 5.1744
    α/(°) 45 38.878
    f 0.52 0.52076
    Xa/mm 0 0.24664
    Fry2/N 8439.64 8478.2
    下载: 导出CSV

    表  5  最终结果

    Table  5.   Final result

    项目 σmax /MPa Ff /N Fm/N Fry2 /N
    计算结果 2311.1 7.7351 207.71 8787.9
    变动率/% 4.33 −2.09 −15.00 4.13
    准确率/% 98.81 95.33 99.82 96.48
    下载: 导出CSV

    表  6  结构参数相关系数表

    Table  6.   Correlation coefficient of structural parameters

    结构参数 目标函数与约束函数
    Fry2 Fm Ff σmax
    Da 0.23 0.93 0.14 −0.19
    α −0.82 −0.01 −0.27 −0.19
    下载: 导出CSV
  • [1] 徐起贺,陈静. 滚动直线导轨副的研究现状及发展动向[J]. 河南机电高等专科学校学报,2009,17(2): 1-3. XU Qihe,CHEN Jing. Research situation and developing trends of liner motion ball guide[J]. Journal of Henan Mechanical and Electrical Engineering College,2009,17(2): 1-3. (in Chinese

    XU Qihe, CHEN Jing. Research situation and developing trends of liner motion ball guide[J]. Journal of Henan Mechanical and Electrical Engineering College, 2009, 17(2): 1-3. (in Chinese)
    [2] 夏兆才. 6202型深沟球轴承沟曲率的磨损研究与结构优化[D]. 南京: 东南大学,2020. XIA Zhaocai. Research on groove abrasion and structure optimization of 6202 deep groove ball bearing[D]. Nanjing: Southeast University,2020. (in Chinese

    XIA Zhaocai. Research on groove abrasion and structure optimization of 6202 deep groove ball bearing[D]. Nanjing: Southeast University, 2020. (in Chinese)
    [3] ROSSOPOULOS G N,PAPADOPOULOS C I,LEONTOPOULOS C. Tribological comparison of an optimum single and double slope design of the stern tube bearing,case study for a marine vessel[J]. Tribology International,2020,150: 106343. doi: 10.1016/j.triboint.2020.106343
    [4] SARUHAN H. Optimum design of rotor-bearing system stability performance comparing an evolutionary algorithm versus a conventional method[J]. International Journal of Mechanical Sciences,2006,48(12): 1341-1351. doi: 10.1016/j.ijmecsci.2006.07.009
    [5] ZHANG Shuai,CUI Yongcun,HU Zhonghui,et al. Thermal-stress-wear coupled characteristics of oil seal in airframe rod end-bearing[J]. Tribology International,2021,163: 107132. doi: 10.1016/j.triboint.2021.107132
    [6] 欧屹,梁医,冯虎田. 数控机床功能部件-滚动直线导轨副分册[M]. 北京: 机械工业出版社,2018.
    [7] HAN Huaizhi,YU Ruitian,LI Bingxi,et al. Multi-objective optimization of corrugated tube with loose-fit twisted tape using RSM and NSGA-II[J]. International Journal of Heat and Mass Transfer,2019,131: 781-794. doi: 10.1016/j.ijheatmasstransfer.2018.10.128
    [8] LIAN Yongsheng,LIOU M S. Multiobjective optimization using coupled response surface model and evolutionary algorithm[J]. AIAA Journal,2005,43(6): 1316-1325. doi: 10.2514/1.12994
    [9] 冯吉路,孙志礼,李皓川,等. 基于Kriging模型的轴承结构参数优化设计方法[J]. 航空动力学报,2017,32(3): 723-729. FENG Jilu,SUN Zhili,LI Haochuan,et al. Optimization design method of bearing structure parameters based on Kriging model[J]. Journal of Aerospace Power,2017,32(3): 723-729. (in Chinese

    FENG Jilu, SUN Zhili, LI Haochuan, et al. Optimization design method of bearing structure parameters based on Kriging model[J]. Journal of Aerospace Power, 2017, 32(3): 723-729. (in Chinese)
    [10] 惠文华,刘家浚,朱宝亮,等. 摩擦学与耐磨性设计[M]. 南京: 东南大学出版社,1993.
    [11] HUNG J P,SHIH-SHYN WU J,CHIU J Y. Impact failure analysis of re-circulating mechanism in ball screw[J]. Engineering Failure Analysis,2004,11(4): 561-573. doi: 10.1016/j.engfailanal.2004.01.002
    [12] SHIMIZU S. Load distribution and accuracyrigidity of linear motion ball guides system[J]. Journal of the Japan Society for Precision Engineering,1990,56(8): 1445-1451. doi: 10.2493/jjspe.56.1445
    [13] TAO Weijun,ZHONG Yang,FENG Hutian,et al. Model for wear prediction of roller linear guides[J]. Wear,2013,305(1/2): 260-266.
    [14] 王民,乐兵兵,裴二阳. 基于Hertz接触的滚珠直线导轨副接触刚度建模与分析[J]. 北京工业大学学报,2015,41(8): 1128-1132,1150. WANG Min,LE Bingbing,PEI Eryang. Contact stiffness modeling and analysis of linear ball guides based on hertz contact theory[J]. Journal of Beijing University of Technology,2015,41(8): 1128-1132,1150. (in Chinese doi: 10.11936/bjutxb2014120030

    WANG Min, LE Bingbing, PEI Eryang. Contact stiffness modeling and analysis of linear ball guides based on hertz contact theory[J]. Journal of Beijing University of Technology, 2015, 41(8): 1128-1132, 1150. (in Chinese) doi: 10.11936/bjutxb2014120030
    [15] International Organization for Standardization. Ball screws: Part 4 Static axial rigidity: ISO 3408-4 [S]. Switzerland: BSI,2006: 12-13.
    [16] TONG V C,KHIM G,PARK C H,et al. Linear ball guide design optimization considering stiffness,friction force,and basic dynamic load rating using particle swarm optimization[J]. Journal of Mechanical Science and Technology,2020,34(3): 1313-1323. doi: 10.1007/s12206-020-0230-4
    [17] WONG S M,HOBBS R E,ONOF C. An adaptive response surface method for reliability analysis of structures with multiple loading sequences[J]. Structural Safety,2005,27(4): 287-308. doi: 10.1016/j.strusafe.2005.02.001
    [18] STEPHANOU M,VARUGHESE M. Sequential estimation of Spearman rank correlation using Hermite series estimators[J]. Journal of Multivariate Analysis,2021,186: 104783. doi: 10.1016/j.jmva.2021.104783
  • 加载中
图(12) / 表(6)
计量
  • 文章访问数:  44
  • HTML浏览量:  24
  • PDF量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-22
  • 网络出版日期:  2024-03-29

目录

    /

    返回文章
    返回