留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二元塞式喷管塞锥气膜冷却特性研究

陈静 单勇 张序墉 征建生

陈静, 单勇, 张序墉, 等. 二元塞式喷管塞锥气膜冷却特性研究[J]. 航空动力学报, 2024, 39(8):20220080 doi: 10.13224/j.cnki.jasp.20220080
引用本文: 陈静, 单勇, 张序墉, 等. 二元塞式喷管塞锥气膜冷却特性研究[J]. 航空动力学报, 2024, 39(8):20220080 doi: 10.13224/j.cnki.jasp.20220080
CHEN Jing, SHAN Yong, ZHANG Xuyong, et al. Study of film cooling characteristics on plug of two-dimensional (2-D) plug nozzle[J]. Journal of Aerospace Power, 2024, 39(8):20220080 doi: 10.13224/j.cnki.jasp.20220080
Citation: CHEN Jing, SHAN Yong, ZHANG Xuyong, et al. Study of film cooling characteristics on plug of two-dimensional (2-D) plug nozzle[J]. Journal of Aerospace Power, 2024, 39(8):20220080 doi: 10.13224/j.cnki.jasp.20220080

二元塞式喷管塞锥气膜冷却特性研究

doi: 10.13224/j.cnki.jasp.20220080
详细信息
    作者简介:

    陈静(1995-),女,硕士生,主要从事航空发动机传热方面的研究。E-mail:2668065263@qq.com

    通讯作者:

    单勇(1978-),男,教授、博士生导师,博士,主要从事飞行器红外隐身和航空发动机传热方面的研究。E-mail:nuaasy@nuaa.edu.cn

  • 中图分类号: V231.1

Study of film cooling characteristics on plug of two-dimensional (2-D) plug nozzle

  • 摘要:

    加力状态使得二元塞式喷管热负荷急剧升高,势必需要引入冷气对塞锥进行冷却。在缩比模型试验验证的基础上,采用全尺寸模型数值仿真,对比分析了入口总压比、开孔率和气膜孔径对二元塞式喷管流动和冷却特性的影响。结果表明:在研究参数范围内,气膜冷却能够显著降低塞锥表面温度,对喷管推力系数影响甚微;以无冷却为基准,入口总压比从1.02增至1.20,塞锥表面温度降低了20%~45%,总压恢复系数降低了0.22%~1.26%;增大开孔率会导致冷却通道压力降低、气膜出流阻力增大,在塞锥尾部甚至出现热气倒灌,综合考虑整个塞锥表面的冷气出流状况,小开孔率结构更具优势;减小气膜孔径意味着气膜孔数目增加、气膜覆盖范围增大,使得塞锥冷却效果有微弱的改善。

     

  • 图 1  二元塞式喷管模型

    Figure 1.  Model of 2-D plug nozzle

    图 2  二元塞式喷管冷却结构示意图

    Figure 2.  Sketch map of cooling structure of 2-D plug nozzle

    图 3  计算域示意图

    Figure 3.  Sketch map of computational region

    图 4  验证模型

    Figure 4.  Verification model

    图 5  二元塞锥冷却结构

    Figure 5.  Cooling structure of 2-D plug

    图 6  二元塞锥试验件

    Figure 6.  Experimental specimen of 2-D plug

    图 7  试验系统示意图

    Figure 7.  Sketch map of experimental system

    图 8  塞锥后体综合冷效对比

    Figure 8.  Comparison of comprehensive cooling effect on plug rear surface

    图 9  入口总压比对推力和总压恢复系数的影响

    Figure 9.  Effect of total pressure ratio of inlets on total pressure recovery and thrust coefficients

    图 10  入口总压比对塞锥表面静温分布的影响

    Figure 10.  Effect of total pressure ratio of inlets on temperature distribution on plug surface

    图 11  入口总压比对特征点附近流线与静压分布的影响

    Figure 11.  Effect of total pressure ratio of inlets on streamline and static pressure distributions around feature points

    图 12  入口总压比对塞锥表面热流密度的影响

    Figure 12.  Effect of total pressure ratio of inlets on density of heat flux on plug surface

    图 13  开孔率对推力和总压恢复系数的影响

    Figure 13.  Effect of perforated percentage of film holes on total pressure recovery and thrust coefficients

    图 14  开孔率对塞锥表面静温分布的影响

    Figure 14.  Effect of perforated percentage of film holes on temperature distribution on plug surface

    图 15  开孔率对特征点附近流线与静压分布的影响

    Figure 15.  Effect of perforated percentage of film holes on streamline and static pressure distributions around feature points

    图 16  开孔率对塞锥表面热流密度的影响

    Figure 16.  Effect of perforated percentage of film holes on density of heat flux on plug surface

    图 17  气膜孔径对推力和总压恢复系数的影响

    Figure 17.  Effect of diameter of film holes on total pressure recovery and thrust coefficients

    图 18  气膜孔径对塞锥表面静温分布的影响

    Figure 18.  Effect of diameter of film holes on temperature distribution on plug surface

    图 19  气膜孔径对塞锥表面热流密度的影响

    Figure 19.  Effect of diameter of film holes on density of heat flux on plug surface

    表  1  气膜孔结构和冷气参数

    Table  1.   Parameters of film structure and cooling air

    参数模型
    s/mm15.7115.7110.477.85
    p/mm10555
    φ/%0.51.01.52.0
    d/mm0.6,0.8,1.0
    ζ1.02,1.05,1.10,1.15,1.20
    下载: 导出CSV

    表  2  不同入口总压比下塞锥冷却流量比

    Table  2.   Plug cooling flow ratio under different total pressure ratio of inlets

    ζχ/%
    1.023.63
    1.054.54
    1.105.40
    1.156.07
    1.206.67
    下载: 导出CSV

    表  3  不同开孔率下塞锥冷却流量比

    Table  3.   Plug cooling flow ratio under different perforated percentage %

    φ χ
    0.5 4.54
    1.0 4.91
    1.5 4.95
    2.0 5.15
    下载: 导出CSV

    表  4  不同气膜孔径下塞锥冷却流量占比

    Table  4.   Plug cooling flow ratio vs diameter of film holes

    d/mm χ/%
    0.6 4.23
    0.8 4.44
    1.0 4.54
    下载: 导出CSV
  • [1] 徐顶国,艾俊强,雷武涛,等. 未来新一代轰炸机隐身特性需求分析[J]. 航空工程进展,2018,9(4): 451-457. XU Dingguo,AI Junqiang,LEI Wutao,et al. Analysis on stealth requirement of next-generation bomber in the future[J]. Advances in Aeronautical Science and Engineering,2018,9(4): 451-457. (in Chinese

    XU Dingguo, AI Junqiang, LEI Wutao, et al. Analysis on stealth requirement of next-generation bomber in the future[J]. Advances in Aeronautical Science and Engineering, 2018, 9(4): 451-457. (in Chinese)
    [2] 张加圣,王海涛,万小朋,等. 第四代战斗机性能指标概述[J]. 航空制造技术,2008,51(16): 66-69. ZHANG Jiasheng,WANG Haitao,WAN Xiaopeng,et al. Summarization of the fourth generation fighter performance[J]. Aeronautical Manufacturing Technology,2008,51(16): 66-69. (in Chinese doi: 10.3969/j.issn.1671-833X.2008.16.012

    ZHANG Jiasheng, WANG Haitao, WAN Xiaopeng, et al. Summarization of the fourth generation fighter performance[J]. Aeronautical Manufacturing Technology, 2008, 51(16): 66-69. (in Chinese) doi: 10.3969/j.issn.1671-833X.2008.16.012
    [3] 林鹏,左林玄,王霄,等. 未来作战飞机飞发一体化技术的思考[J]. 航空动力,2018(2): 52-57. LIN Peng,ZUO Linxuan,WANG Xiao,et al. Discussion on aircraft/engine integration technology of future combat aircraft[J]. Aerospace Power,2018(2): 52-57. (in Chinese

    LIN Peng, ZUO Linxuan, WANG Xiao, et al. Discussion on aircraft/engine integration technology of future combat aircraft[J]. Aerospace Power, 2018(2): 52-57. (in Chinese)
    [4] HEARTH D P,GORTON G C. Investigation of thrust and drag characteristics of a plug-type exhaust nozzle: NACA-RM-E53L16 [R]. National Advisory Committee for Aeronautics in America,1954.
    [5] CIEPLUCH C,KRULL H,STEFFEN F W. Preliminary investigation of performance of variable-throat extended-plug-type nozzles over wide range of nozzle pressure ratios: NACA-RM-E53J28[R]. National Advisory Committee for Aeronautics in America,1954.
    [6] PETIT J,CAPONE F. Performance characteristics of a wedge nozzle installed on an F-18 propulsion wind tunnel model: AIAA 1979-1164[R]. Reston,Virigina: Proceedings of the 15th Joint Propulsion Conference,1979.
    [7] 王长辉,刘宇,戴梧叶. 塞锥型面简化与截短对塞式喷管性能的影响[J]. 推进技术,2002,23(5): 438-440. WANG Changhui,LIU Yu,DAI Wuye. Effects of plug contour simplification and truncation on linear plug nozzle[J]. Journal of Propulsion Technology,2002,23(5): 438-440. (in Chinese doi: 10.3321/j.issn:1001-4055.2002.05.021

    WANG Changhui, LIU Yu, DAI Wuye. Effects of plug contour simplification and truncation on linear plug nozzle[J]. Journal of Propulsion Technology, 2002, 23(5): 438-440. (in Chinese) doi: 10.3321/j.issn:1001-4055.2002.05.021
    [8] CHENOWETH F,JERACKI R J. Coolant flow effects on the performance of a conical plug nozzle at Mach numbers from 0 to 2.0[R]. NASA TM-X-2076,1970.
    [9] ROMMEL T,HAGEMANN G,SCHLEY C A,et al. Plug nozzle flowfield analysis[J]. Journal of Propulsion and Power,1997,13(5): 629-634. doi: 10.2514/2.5227
    [10] FUJII K,IMAI K,SATO T. Computational analysis of the flow field near the boat-tail region of annular plug nozzles[J]. JSME International Journal Series B,2002,45(4): 745-751. doi: 10.1299/jsmeb.45.745
    [11] 盛超,滕状,李庆林,等. 塞式矢量喷管热态内流特性试验[J]. 航空发动机,2020,46(6): 29-33. SHENG Chao,TENG Zhuang,LI Qinglin,et al. Experiment on hot internal flow characteristics of plug vectoring nozzle[J]. Aeroengine,2020,46(6): 29-33. (in Chinese

    SHENG Chao, TENG Zhuang, LI Qinglin, et al. Experiment on hot internal flow characteristics of plug vectoring nozzle[J]. Aeroengine, 2020, 46(6): 29-33. (in Chinese)
    [12] VEEN R V,GENTRY R,HOFFMAN J D. Design of shrouded-plug nozzles for maximum thrust[J]. AIAA Journal,1974,12(9): 1193-1197. doi: 10.2514/3.49452
    [13] SULE W,MUELLER T. Annular truncated plug nozzle flowfield and base pressure characteristics: AIAA 1973-137 [R] Reston,Virigina: Proceedings of the 11th Aerospace Sciences Meeting,1973.
    [14] CLER D,MASON M,GUTHRIE A. Experimental investigation of spherical-convergent-flap thrust-vectoring two-dimensional plug nozzles: AIAA 1993-2431[R]. Reston,Virigina: Proceedings of the 29th Joint Propulsion Conference and Exhibit,1993.
    [15] 张靖周,王旭,单勇. 塞锥后体气膜冷却对轴对称塞式喷管红外辐射和气动性能的影响[J]. 航空学报,2015,36(8): 2601-2608. ZHANG Jingzhou,WANG Xu,SHAN Yong. Effects of plug rear-body film cooling on infrared radiation and aerodynamic performance of axisymmetric plug nozzle[J]. Acta Aeronautica et Astronautica Sinica,2015,36(8): 2601-2608. (in Chinese

    ZHANG Jingzhou, WANG Xu, SHAN Yong. Effects of plug rear-body film cooling on infrared radiation and aerodynamic performance of axisymmetric plug nozzle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2601-2608. (in Chinese)
    [16] 周兵,吉洪湖. 塞锥气膜冷却对二元塞式喷管红外特征的影响[J]. 航空动力学报,2016,31(12): 2895-2903. ZHOU Bing,JI Honghu. Effect of wedge film cooling on the infrared signature of two-dimensional wedge nozzle[J]. Journal of Aerospace Power,2016,31(12): 2895-2903. (in Chinese

    ZHOU Bing, JI Honghu. Effect of wedge film cooling on the infrared signature of two-dimensional wedge nozzle[J]. Journal of Aerospace Power, 2016, 31(12): 2895-2903. (in Chinese)
    [17] 陈俊,吉洪湖. 二元塞式喷管红外特征及壁面降温的红外抑制效果计算[J]. 航空动力学报,2012,27(11): 2429-2435. CHEN Jun,JI Honghu. Numerical simulation of the infrared radiation characteristics and infrared restraining effect of lower wall temperature for two-dimensional plug nozzle[J]. Journal of Aerospace Power,2012,27(11): 2429-2435. (in Chinese

    CHEN Jun, JI Honghu. Numerical simulation of the infrared radiation characteristics and infrared restraining effect of lower wall temperature for two-dimensional plug nozzle[J]. Journal of Aerospace Power, 2012, 27(11): 2429-2435. (in Chinese)
    [18] NOSEK S M,STRAIGHT D M. Heat transfer characteristics of partially film cooled plug nozzle on a J-85 afterburning turbojet engine[R]. NASA TM X-3362,1976.
    [19] CLARK J,LIEBERMAN A. Thermal design study of an air-cooled plug-nozzle system for a supersonic cruise aircraft[R]. NASA TM X-2475,1972.
    [20] 征建生,单勇,张靖周. 二元塞式矢量喷管塞锥尾缘冷却及红外辐射抑制效果[J]. 航空学报,2017,38(12): 121384. ZHENG Jiansheng,SHAN Yong,ZHANG Jingzhou. Cooling and infrared radiation suppression effect of plug trailing-body of two-dimensional vector plug nozzle[J]. Acta Aeronautica et Astronautica Sinica,2017,38(12): 121384. (in Chinese

    ZHENG Jiansheng, SHAN Yong, ZHANG Jingzhou. Cooling and infrared radiation suppression effect of plug trailing-body of two-dimensional vector plug nozzle[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12): 121384. (in Chinese)
    [21] HARRINGTON D,NOSEK S,STRAIGHT D. Cold-flow performance of several variations of a ram-air-cooled plug nozzle for supersonic-cruise aircraft[R]. NASA TM X-3110,1974.
  • 加载中
图(19) / 表(4)
计量
  • 文章访问数:  25
  • HTML浏览量:  12
  • PDF量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-23
  • 网络出版日期:  2024-03-27

目录

    /

    返回文章
    返回