留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

部分预混燃烧室热声不稳定及火焰结构实验分析

余志健 杨旸

余志健, 杨旸. 部分预混燃烧室热声不稳定及火焰结构实验分析[J]. 航空动力学报, 2022, 37(12):2851-2864 doi: 10.13224/j.cnki.jasp.20220082
引用本文: 余志健, 杨旸. 部分预混燃烧室热声不稳定及火焰结构实验分析[J]. 航空动力学报, 2022, 37(12):2851-2864 doi: 10.13224/j.cnki.jasp.20220082
YU Zhijian, YANG Yang. Investigation of thermo-acoustic instabilities and flame structures in a partially premixed combustor[J]. Journal of Aerospace Power, 2022, 37(12):2851-2864 doi: 10.13224/j.cnki.jasp.20220082
Citation: YU Zhijian, YANG Yang. Investigation of thermo-acoustic instabilities and flame structures in a partially premixed combustor[J]. Journal of Aerospace Power, 2022, 37(12):2851-2864 doi: 10.13224/j.cnki.jasp.20220082

部分预混燃烧室热声不稳定及火焰结构实验分析

doi: 10.13224/j.cnki.jasp.20220082
基金项目: 国家重大科技专项(J2019-Ⅲ-0020-0064)
详细信息
    作者简介:

    余志健(1993-),男,博士生,主要从事燃机燃烧室热声不稳定研究

    通讯作者:

    杨旸(1984-),女,研究员,博士,主要从事燃机燃烧室研究。E-mail:yybelinda@outlook.com

  • 中图分类号: V231.2

Investigation of thermo-acoustic instabilities and flame structures in a partially premixed combustor

  • 摘要:

    为探明旋流部分预混燃烧室热声不稳定特性及其与火焰结构关系,进行了自激热声实验。采用重构相图解析压力脉动、采用瑞利指数表征其与热释放率脉动关系、采用本征正交分解获得火焰相干结构。结果表明:随当量比增加,压力脉动呈现低振幅脉动、间歇振荡、极限环振荡和低振幅脉动,脉动频率受腔体1阶纯声学模态(特征频率约80.8 Hz)控制。未发生振荡,瑞利指数维持在零值;热声不稳定时,瑞利指数在零值以上。本征正交分解表明,极限环振荡,前2阶模态(模态能量占比55%以上)火焰分布沿纵向发生变明和变暗交替变化,由连续涡脱落导致,且模态时间系数频率83.2 Hz与压力脉动频率83.3 Hz一致;低当量比,模态无明显空间分布规律;间歇振荡,主导模态为火焰轴对称热释放率变化;高当量比,火焰仅外边缘沿纵向发生大尺度脉动。

     

  • 图 1  旋流预混燃烧室实验系统示意图(单位:mm)

    Figure 1.  Diagram of the swirled premixed combustion system (unit:mm)

    图 2  轴向旋流器图

    Figure 2.  Image of the axial swirler

    图 3  旋流器上游及燃烧室中部位置压力脉动时域、频域及相空间重构图(Qair = 500 L/min,Φ = 0.55)

    Figure 3.  Pressure fluctuations in the time domain, its frequency spectrum and the corresponding reconstructed phase diagram in the upstream of swirler and the middle of combustion chamber (Qair = 500 L/min, Φ = 0.55)

    图 4  旋流器上游及燃烧室中部位置压力脉动时域、频域及相空间重构图(Qair = 500 L/min,Φ = 0.60)

    Figure 4.  Pressure fluctuations in the time domain, its frequency spectrum and the corresponding reconstructed phase diagram in the upstream of swirler and the middle of combustion chamber (Qair = 500 L/min, Φ = 0.60)

    图 5  旋流器上游及燃烧室中部位置压力脉动时域、频域及相空间重构图(Qair = 500 L/min,Φ = 0.70)

    Figure 5.  Pressure fluctuations in the time domain, its frequency spectrum and the corresponding reconstructed phase diagram in the upstream of swirler and the middle of combustion chamber (Qair = 500 L/min, Φ = 0.70)

    图 6  旋流器上游及燃烧室中部位置压力脉动时域、频域及相空间重构图(Qair = 500 L/min,Φ = 0.80)

    Figure 6.  Pressure fluctuations in the time domain, its frequency spectrum and the corresponding reconstructed phase diagram in the upstream of swirler and the middle of combustion chamber (Qair = 500 L/min, Φ = 0.80)

    图 7  实验段腔体1阶及2阶声学模态

    Figure 7.  The first and second order acoustic modes of the experimental part cavity

    图 8  不同当量比下压力脉动与热释放率脉动对比(Qair=500 L/min)

    Figure 8.  Comparison of pressure and heat release rate fluctuations for different equivalence ratios (Qair=500 L/min)

    图 9  当量比Φ=0.55,0.70时热释放率脉动频谱

    Figure 9.  Frequency spectrum of heat release rate fluctuations at equivalence ratios Φ=0.55,0.70

    图 10  当量比对瑞利指数的影响

    Figure 10.  Effect of equivalence ratios on Rayleigh index

    图 11  不同当量比下火焰CH*时均图像(Qair=500 L/min)

    Figure 11.  Time-averaged image of CH* chemiluminescence distributions (Qair=500 L/min)

    图 12  当量比对模态能量分布的影响

    Figure 12.  Effect of equivalence ratios on mode energy distributions

    图 13  火焰时均图像及前5阶POD模态分布(Φ = 0.55)

    Figure 13.  Time-averaged and the first 5 POD modes of flames (Φ = 0.55)

    图 14  火焰时均图像及前5阶POD模态分布(Φ = 0.60)

    Figure 14.  Time-averaged and the first 5 POD modes of flames (Φ = 0.60)

    图 15  火焰时均图像及前5阶POD模态分布(Φ = 0.70)

    Figure 15.  Time-averaged and the first 5 POD modes of flames (Φ = 0.70)

    图 16  火焰时均图像及前5阶POD模态分布(Φ = 0.80)

    Figure 16.  Time-averaged and the first 5 POD modes of flames (Φ = 0.80)

    图 17  前2阶POD模态时间系数时域和频谱(Φ = 0.55)

    Figure 17.  Time coefficient of the first 2 POD modes in the time and frequency domains (Φ = 0.55)

    图 18  前两阶POD模态时间系数时域图和频谱(Φ = 0.70)

    Figure 18.  Time coefficient of the first 2 POD modes in the time and frequency domains (Φ = 0.70)

  • [1] YING H,YANG V. Dynamics and stability of lean-premixed swirl-stabilized combustion[J]. Progress in Energy and Combustion Science,2009,35(4): 293-364. doi: 10.1016/j.pecs.2009.01.002
    [2] NOBLE D,WU D,EMERSON B,et al. Assessment of current capabilities and near-term availability of hydrogen-fired gas turbines considering a low-carbon future[J]. Journal of Engineering for Gas Turbines and Power,2021,143(4): 041002.1-041002.10.
    [3] WORTH N A,DAWSON J R. Effect of equivalence ratio on the modal dynamics of azimuthal combustion instabilities[J]. Proceedings of the Combustion Institute,2017,36(3): 3743-3751. doi: 10.1016/j.proci.2016.06.115
    [4] HAN Xiao,LAERA D,MORGANS A S,et al. Inlet temperature driven supercritical bifurcation of combustion instabilities in a lean premixed prevaporized combustor[J]. Experimental Thermal and Fluid Science,2019,109: 109857.1-109857.11.
    [5] KARLIS E,LIU Yushuai,HARDALUPAS Y,et al. H2 enrichment of CH4 blends in lean premixed gas turbine combustion: an experimental study on effects on flame shape and thermoacoustic oscillation dynamics[J]. Fuel,2019,254: 115524.1-115524.16.
    [6] CAMPA G,CAMPOREALE S M. Prediction of the thermoacoustic combustion instabilities in practical annular combustors[J]. Journal of Engineering for Gas Turbines and Power,2014,136(9): 091504.1-091504.10.
    [7] MENSAH G A,CAMPA G,MOECK J P. Efficient computation of thermoacoustic modes in industrial annular combustion chambers based on Bloch-wave theory[J]. Journal of Engineering for Gas Turbines and Power,2016,138(8): 081502.1-081502.7.
    [8] KWON M,OH S,KIM Y. Numerical analysis for attenuation effects of perforated plates on thermoacoustic instability in the multiple flame combustor[J]. Applied Thermal Engineering,2018,132: 321-332. doi: 10.1016/j.applthermaleng.2017.12.081
    [9] HAN Xiao,LAERA D,YANG Dong,et al. Flame interactions in a stratified swirl burner: Flame stabilization, combustion instabilities and beating oscillations[J]. Combustion and Flame,2020,212: 500-509. doi: 10.1016/j.combustflame.2019.11.020
    [10] 王振林,李祥晟,庄士超,等. 旋进涡核与火焰面耦合作用对燃烧稳定性影响的数值研究[J]. 西安交通大学学报,2018,52(7): 60-67. WANG Zhenlin,LI Xiangsheng,ZHUANG Shichao,et al. Numerical study on the influence of precessing vortex core coupling with flame surface on combustion stability[J]. Journal of Xi’an Jiaotong University,2018,52(7): 60-67. (in Chinese doi: 10.7652/xjtuxb201807009
    [11] TAAMALLAH S,LABRY Z A,SHANBHOGUE S J,et al. Thermo-acoustic instabilities in lean premixed swirl-stabilized combustion and their link to acoustically coupled and decoupled flame macrostructures[J]. Proceedings of the Combustion Institute,2015,35(3): 3273-3282. doi: 10.1016/j.proci.2014.07.002
    [12] WANG Xinyao,HAN Meng,HAN Xiao,et al. Flame structures and thermoacoustic instabilities of centrally-staged swirl flames operating in different partially-premixed modes[J]. Energy,2021,236: 121512.1-121512.13.
    [13] HOLMES P, LUMLEY J L, BERKOOZ G, et al. Turbulence, coherent structures, dynamical systems and symmetry[M]. Cambridge, UK: Cambridge University Press, 2012.
    [14] SCHMID P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics,2010,656: 5-28. doi: 10.1017/S0022112010001217
    [15] QUINLAN J M,ZINN B T. Development and dynamical analysis of laboratory facility exhibiting full-scale combustion instability characteristics[J]. AIAA Journal,2017,55(12): 4314-4329. doi: 10.2514/1.J055680
    [16] YANG Yang,LIU Xiao,ZHANG Zhihao. Large eddy simulation calculated flame dynamics of one F-class gas turbine combustor[J]. Fuel,2020,261: 116451.1-116451.12.
    [17] HALL K C,THOMAS J P,DOWELL E H. Proper orthogonal decomposition technique for transonic unsteady aerodynamic flows[J]. AIAA Journal,2000,38(10): 1853-1862. doi: 10.2514/2.867
    [18] HUANG Cheng,ANDERSON W E,HARVAZINSKI M E,et al. Analysis of self-excited combustion instabilities using decomposition techniques[J]. AIAA Journal,2016,54(9): 2791-2807. doi: 10.2514/1.J054557
    [19] 苏贺,郭志辉. 分级旋流火焰的燃烧不稳定性及火焰动力学[J]. 航空动力学报,2021,36(4): 806-815. SU He,GUO Zhihui. Combustion instability and flame dynamics of staged swirl flame[J]. Journal of Aerospace Power,2021,36(4): 806-815. (in Chinese doi: 10.13224/j.cnki.jasp.2021.04.013
    [20] 马静,郭志辉. 贫燃预混旋流火焰的模态转换燃烧不稳定特性分析[J]. 推进技术,2020,41(5): 1072-1081. Ma Jing,GUO Zhihui. Analysis of combustion instability characteristics of mode switching on lean-premixed swirling flame[J]. Journal of Propulsion Technology,2020,41(5): 1072-1081. (in Chinese doi: 10.13675/j.cnki.tjjs.190349
    [21] PETERS N. Turbulent combustion[M]. Cambridge, UK: Cambridge University Press, 2000.
    [22] 朱明武. 动压测量[M]. 北京: 国防工业出版社, 1983.
    [23] HARDALUPAS Y,ORAIN M. Local measurements of the time-dependent heat release rate and equivalence ratio using chemiluminescent emission from a flame[J]. Combustion and Flame,2004,139(3): 188-207. doi: 10.1016/j.combustflame.2004.08.003
    [24] 高普云. 非线性动力学[M]. 长沙: 国防科技大学出版社, 2005.
    [25] CULICK F E C. Nonlinear behavior of acoustic waves in combustion chambers—Ⅱ[J]. Acta Astronautica,1976,3(9/10): 735-757.
    [26] RAJASEGAR R, MITSINGAS C M, MAYHEW E, et al. Proper orthogonal decomposition for flame dynamics of microwave plasma assisted swirl stabilized premixed flames[C]// The 55th AIAA Aerospace Sciences Meeting. Grapevine, US: AIAA, 2017: 1973.1-1973.25.
    [27] DHANUKA S K,TEMME J E,DRISCOLL J F,et al. Vortex-shedding and mixing layer effects on periodic flashback in a lean premixed prevaporized gas turbine combustor[J]. Proceedings of the Combustion Institute,2009,32(2): 2901-2908. doi: 10.1016/j.proci.2008.06.155
  • 加载中
图(19)
计量
  • 文章访问数:  161
  • HTML浏览量:  180
  • PDF量:  89
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-23
  • 网络出版日期:  2022-11-07

目录

    /

    返回文章
    返回