留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维前飞扑翼运动学参数优化

徐启炎 朱建阳 朱名康 谢鹏

徐启炎, 朱建阳, 朱名康, 等. 三维前飞扑翼运动学参数优化[J]. 航空动力学报, 2024, 39(9):20220083 doi: 10.13224/j.cnki.jasp.20220083
引用本文: 徐启炎, 朱建阳, 朱名康, 等. 三维前飞扑翼运动学参数优化[J]. 航空动力学报, 2024, 39(9):20220083 doi: 10.13224/j.cnki.jasp.20220083
XU Qiyan, ZHU Jianyang, ZHU Mingkang, et al. Optimization of kinematic parameters of 3D forward flapping wing[J]. Journal of Aerospace Power, 2024, 39(9):20220083 doi: 10.13224/j.cnki.jasp.20220083
Citation: XU Qiyan, ZHU Jianyang, ZHU Mingkang, et al. Optimization of kinematic parameters of 3D forward flapping wing[J]. Journal of Aerospace Power, 2024, 39(9):20220083 doi: 10.13224/j.cnki.jasp.20220083

三维前飞扑翼运动学参数优化

doi: 10.13224/j.cnki.jasp.20220083
基金项目: 国家自然科学基金(51975429,51505347)
详细信息
    作者简介:

    徐启炎(1997-),男,硕士,主要从事扑翼飞行器样机研制研究

    通讯作者:

    朱建阳(1981-),男,教授,博士,主要从事扑翼飞行器机理研究。E-mail:zhujianyang02@163.com

  • 中图分类号: V211.3

Optimization of kinematic parameters of 3D forward flapping wing

  • 摘要:

    采用田口试验和数值求解三维N-S方程相结合的方法,以提升扑翼的升举效率为目标,对缩减频率、扑动振幅和俯仰振幅这三个运动学参数进行优化。结果表明:与最差参数组合扑翼相比,最佳参数组合扑翼的时均升力系数提升了52.1%,升举效率提高了85.52%;运动学参数对扑翼气动性能影响的强弱依次为缩减频率,扑动振幅和俯仰振幅。进一步通过对扑翼表面的流场分析发现,采用最佳参数可以增强贴附在扑翼表面上涡流的强度,以及促进扑翼尾迹反卡门涡街的形成,从而使扑翼具有更好的气动特性。

     

  • 图 1  扑翼运动简图

    Figure 1.  Flapping wing movement diagram

    图 2  计算域和边界条件示意图

    Figure 2.  Schematic of computational domain and boundary conditions

    图 3  不同网格密度和时间步长下扑翼升力和阻力系数

    Figure 3.  Evolution of lift and drag coefficient of flapping wings for different grid densities and time steps

    图 4  不同网格密度和时间步长下第四个扑翼循环的升力和推力系数的均值对比

    Figure 4.  Mean value comparison of lift and thrust coefficients of the fourth flapping wing cycle under different mesh densities and time steps

    图 5  当前数值方法得到的扑翼升力和推力与文献数据的比较

    Figure 5.  Comparison of the lift and thrust of the flapping wing obtained by the literature data and present numerical method

    图 6  各参数水平的平均信噪比

    Figure 6.  Average signal-to-noise ratio of each parameter level

    图 7  各参数对升举效率的影响程度

    Figure 7.  Influence range of each parameter on lifting efficiency

    图 8  两组试验的升力系数

    Figure 8.  Lift coefficient of two groups of trials

    图 9  两组试验的推力系数

    Figure 9.  Thrust coefficient of two groups of trials

    图 10  两组试验的能耗系数

    Figure 10.  Energy consumption coefficient of two groups of trials

    图 11  试验1中扑动和俯仰运动产生的力矩

    Figure 11.  Moment produced by flapping and pitching motion in trial 1

    图 12  试验1和试验18在t=0.75T, z=0.97c, 1.27c and 1.78c处的涡量、压力等值线图

    Figure 12.  Contour plots of vorticity and pressure for trial 1 and trial 18 at t=0.75T, z=0.97c, 1.27c and 1.78c

    图 13  试验1和试验18在一个扑翼循环中的三维涡流结构

    Figure 13.  Three-dimensional vortex structures in the flow for the trial 1and trial 18 in one flapping cycle

    表  1  扑翼几何参数

    Table  1.   Geometric parameters of flapping wing

    参数数值
    b/m0.49
    cr/m0.24
    ct/m0.16
    c/m0.238
    br/m0.06
    S/m20.10846
    下载: 导出CSV

    表  2  网格密度和迭代时间步长细节

    Table  2.   Details of grid density and time step sizes

    网格
    密度
    扑翼表面第1层
    网格高度
    内球域
    网格数
    总网格数迭代时间
    步长
    Grid1b/201.2×1052.5×1050.001T
    0.0005T
    Grid2b/292.4×1055.1×1050.001T
    0.0005T
    Grid3b/414.2×1057.3×1050.001T
    0.0005T
    下载: 导出CSV

    表  3  试验中的参数和水平

    Table  3.   Parameters and levels in the test

    参数 水平
    1 2 3 4 5 6
    $ k $ 0.60 0.75 0.90 1.05 1.20 1.35
    $ {\theta _{\text{m}}} $/(°) 50 55 60
    $ {\beta _{\text{m}}} $/(°) 15 17.5 20
    下载: 导出CSV

    表  4  田口试验正交表

    Table  4.   Orthogonal table of Taguchi test

    试验序号 $ k $ $ {\theta _{\text{m}}} $/(°) $ {\beta _{\text{m}}} $/(°)
    1 0.60 50 15
    2 0.60 55 17.5
    3 0.60 60 20
    4 0.75 50 15
    5 0.75 55 17.5
    6 0.75 60 20
    7 0.90 50 17.5
    8 0.90 55 20
    9 0.90 60 15
    10 1.05 50 20
    11 1.05 55 15
    12 1.05 60 17.5
    13 1.20 50 17.5
    14 1.20 55 20
    15 1.20 60 15
    16 1.35 50 20
    17 1.35 55 15
    18 1.35 60 17.5
    下载: 导出CSV

    表  5  试验结果

    Table  5.   Test results

    试验序号 $ \overline {{C_{\text{l}}}} $ $ - \overline {{C_{\text{d}}}} $ $ \overline {{C_{\text{p}}}} $ $ {\eta _{\text{l}}}/ ( {\text{%}} ) $ $ S/N/{\text{(dB)}} $
    1 0.4493 0.1644 3.8500 11.67 21.34
    2 0.4485 0.2197 3.4345 13.06 22.32
    3 0.4438 0.2805 3.0949 14.34 23.13
    4 0.5117 0.2675 3.5967 14.23 23.06
    5 0.5064 0.3610 3.2607 15.53 23.82
    6 0.4919 0.4677 3.0049 16.37 24.28
    7 0.5358 0.4320 3.1897 16.80 24.51
    8 0.5332 0.5717 2.9604 18.01 25.11
    9 0.5816 0.5791 3.2857 17.70 24.96
    10 0.5677 0.6534 2.9633 19.16 25.65
    11 0.6200 0.6703 3.2811 18.90 25.53
    12 0.5990 0.9012 3.0964 19.35 25.73
    13 0.6186 0.8206 3.1429 19.68 25.88
    14 0.6027 1.0929 2.9618 20.35 26.17
    15 0.6620 1.0895 3.2773 20.20 26.11
    16 0.6084 1.1655 3.0020 20.27 26.14
    17 0.6974 1.1833 3.3285 20.95 26.42
    18 0.6834 1.5846 3.1570 21.65 26.71
    下载: 导出CSV
  • [1] JI Bing,ZHU Qiaolin,GUO Shijun,et al. Design and experiment of a bionic flapping wing mechanism with flapping-twist-swing motion based on a single rotation[J]. AIP Advances,2020,10(6): 065018. doi: 10.1063/5.0008792
    [2] 张弘志,宋笔锋,孙中超,等. 扑翼飞行器驱动机构回顾与展望[J]. 航空学报,2021,42(2): 024024. ZHANG Hongzhi,SONG Bifeng,SUN Zhongchao,et al. Driving mechanism of flapping wing aircraft: review and prospect[J]. Acta Aeronautica et Astronautica Sinica,2021,42(2): 024024. (in Chinese

    ZHANG Hongzhi, SONG Bifeng, SUN Zhongchao, et al. Driving mechanism of flapping wing aircraft: review and prospect[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 024024. (in Chinese)
    [3] 王晨阳,张卫平,邹阳. 仿昆虫扑翼微飞行器研究现状与关键技术[J]. 无人系统技术,2018,1(4): 1-16. WANG Chenyang,ZHANG Weiping,ZOU Yang. Current status and key techniques of insect-inspired flapping-wing micro air vehicles[J]. Unmanned Systems Technology,2018,1(4): 1-16. (in Chinese

    WANG Chenyang, ZHANG Weiping, ZOU Yang. Current status and key techniques of insect-inspired flapping-wing micro air vehicles[J]. Unmanned Systems Technology, 2018, 1(4): 1-16. (in Chinese)
    [4] 杨文青,宋笔锋,宋文萍,等. 仿生微型扑翼飞行器中的空气动力学问题研究进展与挑战[J]. 实验流体力学,2015,29(3): 1-10. YANG Wenqing,SONG Bifeng,SONG Wenping,et al. The progress and challenges of aerodynamics in the bionic flapping-wing micro air vehicle[J]. Journal of Experiments in Fluid Mechanics,2015,29(3): 1-10. (in Chinese

    YANG Wenqing, SONG Bifeng, SONG Wenping, et al. The progress and challenges of aerodynamics in the bionic flapping-wing micro air vehicle[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(3): 1-10. (in Chinese)
    [5] HAIDER N,SHAHZAD A,MUMTAZ QADRI M N,et al. Recent progress in flapping wings for micro aerial vehicle applications[J]. Proceedings of the Institution of Mechanical Engineers,Part C: Journal of Mechanical Engineering Science,2021,235(2): 245-264.
    [6] XU Wenfu,PAN Erzhen,LIU Juntao,et al. Flight control of a large-scale flapping-wing flying robotic bird: system development and flight experiment[J]. Chinese Journal of Aeronautics,2022,35(2): 235-249. doi: 10.1016/j.cja.2021.03.009
    [7] ZHANG C,ROSSI C. A review of compliant transmission mechanisms for bio-inspired flapping-wing micro air vehicles[J]. Bioinspiration & Biomimetics,2017,12(2): 025005.
    [8] 郝永平,李伦,徐九龙,等. 仿生扑翼“0” 形轨迹机构的设计及气动力特性[J]. 机器人,2020,42(2): 179-190. HAO Yongping,LI Lun,XU Jiulong,et al. Design and aerodynamic characteristics of the “0” -shaped trajectory mechanism of bionic flapping wing[J]. Robot,2020,42(2): 179-190. (in Chinese

    HAO Yongping, LI Lun, XU Jiulong, et al. Design and aerodynamic characteristics of the “0” -shaped trajectory mechanism of bionic flapping wing[J]. Robot, 2020, 42(2): 179-190. (in Chinese)
    [9] WANG Zhonglai,HU Xiaorong,WU Yingdong. Energy-efficient wing design for flapping wing micro aerial vehicles[J]. Journal of Mechanical Science and Technology,2019,33(9): 4093-4104. doi: 10.1007/s12206-019-0804-1
    [10] GEHRKE A,MULLENERS K. Phenomenology and scaling of optimal flapping wing kinematics[J]. Physics,2020,17(2): 114-146.
    [11] BHAT S S,ZHAO Jisheng,SHERIDAN J,et al. Effects of flapping-motion profiles on insect-wing aerodynamics[J]. Journal of Fluid Mechanics,2020,884: A8.1-A8.23.
    [12] ZHANG Yixin,WANG Xingjian,WANG Shaoping,et al. Kinematic and aerodynamic investigation of the butterfly in forward free flight for the butterfly-inspired flapping wing air vehicle[J]. Applied Sciences,2021,11(6): 2620. doi: 10.3390/app11062620
    [13] ZHENG Hongyu,XIE Fangfang,JI Tingwei,et al. Kinematic parameter optimization of a flapping ellipsoid wing based on the data-informed self-adaptive quasi-steady model[J]. Physics of Fluids,2020,32(4): 77-105.
    [14] ADDO-AKOTO R,HAN J S,HAN J H. Roles of wing flexibility and kinematics in flapping wing aerodynamics[J]. Journal of Fluids and Structures,2021,104: 103317. doi: 10.1016/j.jfluidstructs.2021.103317
    [15] LIU Chao,LI Pengpeng,SONG Fa,et al. Design optimization and wind tunnel investigation of a flapping system based on the flapping wing trajectories of a beetle’s hindwings[J]. Computers in Biology and Medicine,2022,140: 105085. doi: 10.1016/j.compbiomed.2021.105085
    [16] ZHANG Hao,WEN C,YANG A. Optimization of lift force for a bio-inspired flapping wing model in hovering flight[J]. International Journal of Micro Air Vehicles,2016,8(2): 92-108. doi: 10.1177/1756829316653698
    [17] LANG Xinyu,SONG Bifeng,YANG Wenqing,et al. Aerodynamic performance of owl-like airfoil undergoing bio-inspired flapping kinematics[J]. Chinese Journal of Aeronautics,2021,34(5): 239-252. doi: 10.1016/j.cja.2020.10.017
    [18] ANSARI S A,KNOWLES K,ZBIKOWSKI R. Insectlike flapping wings in the hover part I: effect of wing kinematics[J]. Journal of Aircraft,2008,45(6): 1945-1954. doi: 10.2514/1.35311
    [19] 侯宇,方宗德,刘岚,等. 仿生微扑翼飞行器机构动态分析与工程设计方法[J]. 航空学报,2005,26(2): 173-178. HOU Yu,FANG Zongde,LIU Lan,et al. Dynamic analysis and engineering design of biomimetic flapping-wing micro air vehicles[J]. Acta Aeronautica et Astronautica Sinica,2005,26(2): 173-178. (in Chinese

    HOU Yu, FANG Zongde, LIU Lan, et al. Dynamic analysis and engineering design of biomimetic flapping-wing micro air vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(2): 173-178. (in Chinese)
    [20] HO S,NASSEF H,PORNSINSIRIRAK N,et al. Unsteady aerodynamics and flow control for flapping wing flyers[J]. Progress in Aerospace Sciences,2003,39(8): 635-681. doi: 10.1016/j.paerosci.2003.04.001
    [21] NAGAI H,ISOGAI K,FUJIMOTO T,et al. Experimental and numerical study of forward flight aerodynamics of insect flapping wing[J]. AIAA Journal,2009,47(3): 730-742. doi: 10.2514/1.39462
    [22] COLMENARES D,KANIA R,ZHANG W,et al. Bio-inspired flexible twisting wings increase lift and efficiency of a flapping wing micro air vehicle [EB/OL]. [2022-03-21]. https://doc.taixueshu.com/foreign/arXiv200111586.html.
    [23] 薛栋. 结构参数和机体运动对扑翼性能的影响研究[D]. 西安: 西北工业大学,2018. XUE Dong. The influence of structural parameters and body movement on the performance of flapping wing[D]. Xi’an: Northwestern Polytechnical University,2018. (in Chinese

    XUE Dong. The influence of structural parameters and body movement on the performance of flapping wing[D]. Xi’an: Northwestern Polytechnical University, 2018. (in Chinese)
    [24] ZHU Jianyang,ZHU Mingkang,ZHANG Tao,et al. Improvement of the power extraction performance of a semi-active flapping airfoil by employing two-sided symmetric slot airfoil[J]. Energy,2021,227: 120458. doi: 10.1016/j.energy.2021.120458
    [25] 陈志英,刘勇,周平,等. 基于改进田口试验法的装配公差分析[J]. 计算机集成制造系统,2018,24(5): 1200-1206. CHEN Zhiying,LIU Yong,ZHOU Ping,et al. Assembly tolerance analysis based on improved Taguchi method[J]. Computer Integrated Manufacturing Systems,2018,24(5): 1200-1206. (in Chinese

    CHEN Zhiying, LIU Yong, ZHOU Ping, et al. Assembly tolerance analysis based on improved Taguchi method[J]. Computer Integrated Manufacturing Systems, 2018, 24(5): 1200-1206. (in Chinese)
  • 加载中
图(13) / 表(5)
计量
  • 文章访问数:  21
  • HTML浏览量:  8
  • PDF量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-24
  • 网络出版日期:  2024-04-18

目录

    /

    返回文章
    返回