留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种电动飞机概念方案的参数设计方法

李立 白俊强 刘超宇

李立, 白俊强, 刘超宇. 一种电动飞机概念方案的参数设计方法[J]. 航空动力学报, 2022, 37(12):2749-2761 doi: 10.13224/j.cnki.jasp.20220084
引用本文: 李立, 白俊强, 刘超宇. 一种电动飞机概念方案的参数设计方法[J]. 航空动力学报, 2022, 37(12):2749-2761 doi: 10.13224/j.cnki.jasp.20220084
LI Li, BAI Junqiang, LIU Chaoyu. A sizing method of all-electric aircraft for conceptual design[J]. Journal of Aerospace Power, 2022, 37(12):2749-2761 doi: 10.13224/j.cnki.jasp.20220084
Citation: LI Li, BAI Junqiang, LIU Chaoyu. A sizing method of all-electric aircraft for conceptual design[J]. Journal of Aerospace Power, 2022, 37(12):2749-2761 doi: 10.13224/j.cnki.jasp.20220084

一种电动飞机概念方案的参数设计方法

doi: 10.13224/j.cnki.jasp.20220084
基金项目: 国家“973”计划 (2014CB744804)
详细信息
    作者简介:

    李立(1992-),男,博士生,主要从事电推进系统飞机的总体设计和参数化研究

  • 中图分类号: V221

A sizing method of all-electric aircraft for conceptual design

  • 摘要:

    为了准确地进行电动飞机概念方案的设计评估,从其自身特征出发,结合任务需求和不同飞行阶段的能耗分析,建立了全机总质量评估模块;为了完成方程的封闭和满足必要的飞行性能约束,建立了参数矩阵图模块;搭建的设计系统可以有效评估起飞总质量、翼载荷、功率载荷和翼展等总体参数。基于该系统,对国内外三款电动飞机进行设计和对比分析:不同机型下,程序所得的各项质量、翼面积、展长和翼载荷等均与实际数据相近;各项数据对比的绝对数值差异反映出对于任务的模拟和能耗在合理范围之内,且其相对误差对于初级设计阶段的总体参数评估而言,也是可以接受的。这些研究结果不仅验证了本文设计方法的正确性和可行性,还表明了该方法可为电动飞机初步的参数选定和性能评估提供重要的设计支撑。

     

  • 图 1  参数矩阵图方法示意图

    Figure 1.  Sschematic plot of sizing matrix plot method

    图 2  设计系统工作流程示意图

    Figure 2.  Work-flow of design system

    图 3  针对E430的参数矩阵图

    Figure 3.  Sizing matrix plot for E430

    图 4  本文设计方法对于E430输出的部分结果

    Figure 4.  Partial output results of the paper design method for E430

    图 5  参数更新后的参数矩阵图和起飞总质量

    Figure 5.  Updated sizing matrix plot and maximum takeoff mass

    图 6  针对eFlyer 2的参数矩阵图

    Figure 6.  Sizing matrix plot for eFlyer 2

    图 7  程序对于eFlyer 2输出的部分结果

    Figure 7.  Partial output results of the program for eFlyer 2

    图 8  针对Taurus Electro G2.5的参数矩阵图

    Figure 8.  Sizing matrix plot for Taurus Electro G2.5

    图 9  程序对于 Taurus Electro G2.5输出的部分结果

    Figure 9.  Partial output results of the program for Taurus Electro G2.5

    表  1  E430的输入参数

    Table  1.   Input data of E430

    参数数值
    飞机机组和有效载荷总质量/kg180
    展弦比16.7
    Oswald效率因子0.82*
    电推进系统螺旋桨数量1
    螺旋桨效率0.8*
    换流器(逆变器)效率0.98*
    控制器效率0.95
    电动机效率0.9
    电动机功率密度/(W/kg)2100
    电池功率密度/(W/kg)801
    电池能量密度/(Wh/kg)153.7
    任务需求与
    性能参数
    航程/km170
    最大巡航速度/(km/h)150
    巡航高度/m1000
    巡航速度/(km/h)90
    失速速度/(km/h)60
    爬升率/(m/s)3.5
    盘旋高度/m460*
    盘旋时间/min1*
    起飞滑跑距离/m260
    着陆滑跑距离/m180
    绝对升限/m3500*
    实用升限/m3000*
    下载: 导出CSV

    表  2  E430实际构型和程序输出的总体参数对比

    Table  2.   Comparison of real and simulated data of overall parameters for E430

    参数实际数据程序输出相对误差/%
    Mto/kg470504.97.43
    Ma/kg199220.210.65
    Mb/kg7286.620.28
    Mm/kg1918.1−4.74
    机翼面积/m211.3713.6720.23
    机翼展长/m13.8015.119.49
    翼载荷/(kg/m241.3436.93−10.65
    下载: 导出CSV

    表  3  更新后实际构型和程序输出的总体参数对比

    Table  3.   Comparison of updated real and simulated data of overall parameters

    参数实际数据程序输出相对误差/%
    Mto/kg470484.93.17
    Ma/kg1991990
    Mb/kg7286.319.86
    Mm/kg1919.63.16
    机翼面积/m211.3711.672.64
    机翼展长/m13.8013.961.16
    翼载荷/(kg/m241.3441.550.52
    下载: 导出CSV

    表  4  eFlyer 2的输入参数

    Table  4.   Input data of eFlyer 2

    参数数值
    飞机机组和有效载荷总质量/kg200
    展弦比12
    Oswald效率因子0.8*
    电推进系统螺旋桨数量1
    螺旋桨效率0.8*
    换流器(逆变器)效率0.98*
    控制器效率0.95*
    电动机效率0.93
    电动机功率密度/(W/kg)2500
    电池功率密度/(W/kg)1300
    电池能量密度/(Wh/kg)250
    任务需求与
    性能参数
    航程/km330
    最大巡航速度/(km/h)250
    巡航高度/m3048
    巡航速度/(km/h)178
    失速速度/(km/h)89
    爬升率/(m/s)6.1
    盘旋高度/m460*
    盘旋时间/min5*
    起飞距离/m350
    着陆距离/m350
    绝对升限/m4260
    实用升限/m4000
    下载: 导出CSV

    表  5  eFlyer 2实际构型和程序输出的总体参数对比

    Table  5.   Comparison of real and simulated data for eFlyer 2

    参数实际数据程序输出相对误差/%
    Mto/kg862915.66.22
    Ma/kg365385.85.70
    Mb/kg253281.611.30
    Mm/kg4448.29.55
    机翼面积/m21211.83−1.42
    机翼展长/m1211.91−0.75
    翼载荷/(kg/m271.8377.407.74
    下载: 导出CSV

    表  6  Taurus Electro G2.5的输入参数

    Table  6.   Input data of Taurus Electro G2.5

    参数数值
    飞机机组和有效载荷总质量/kg200
    展弦比18.3
    Oswald效率因子0.82*
    电推进系统螺旋桨数量1
    螺旋桨效率0.8*
    换流器(逆变器)效率0.98*
    控制器效率0.95*
    电动机效率0.9
    电动机功率密度/(W/kg)2800
    电池功率密度/(W/kg)1000
    电池能量密度/(Wh/kg)200
    任务需求与
    性能参数
    航程/km90
    最大巡航速度/(km/h)150
    巡航高度/m1000
    巡航速度/(km/h)110
    失速速度/(km/h)63
    爬升率/(m/s)3.1
    盘旋高度/m460*
    盘旋时间/min1*
    起飞距离/m245
    着陆距离/m270
    绝对升限/m4200
    实用升限/m3900
    下载: 导出CSV

    表  7  Electro G2.5实际构型和程序输出的总体参数对比

    Table  7.   Comparison of real and simulated data of overall parameters for Electro G2.5

    参数实际数据程序输出相对误差/%
    Mto/kg550580.2 5.49
    Ma/kg297318.8 7.34
    Mb/kg4248.8 16.19
    Mm/kg1112.6 14.55
    机翼面积/m212.2611.61−5.30
    机翼展长/m14.9714.58−2.61
    翼载荷/(kg/m244.8649.97 11.40
    下载: 导出CSV
  • [1] GIOVANNI B. A global approach to reducing aviation emissions[R]. Montreal: IATA, 2009.
    [2] GONZÁLEZ R K. Report of the executive committee on agenda item 17 [C]// ICAO 37th Assembly Working Papers. Montreal: ICAO, 2010: 1-17.
    [3] RIBEIRO J,AFONSO F,RIBEIRO I,et al. Environmental assessment of hybrid-electric propulsion in conceptual aircraft design[J]. Journal of Cleaner Production,2020,247: 1-13.
    [4] SPOHR C. Aircraft technology roadmap to 2050[R]. Geneva: International Air Transport Association, 2019.
    [5] 伍赛特. 电动飞机应用可行性分析及前景展望[J]. 交通行业节能,2020(4): 57-60. WU Saite. Feasibility analysis and prospect of electric aircraft application[J]. Energy Saving in Transportation Industry,2020(4): 57-60. (in Chinese
    [6] 黄俊. 分布式电推进飞机设计技术综述[J]. 航空学报,2021,42(3): 1-17. HUANG Jun. Survey on design technology of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica,2021,42(3): 1-17. (in Chinese
    [7] 黄俊,杨凤田. 新能源电动飞机发展与挑战[J]. 航空学报,2016,37(1): 57-68. HUANG Jun,YANG Fengtian. Development and challenges of electric aircraft with new energies[J]. Acta Aeronauticaet Astronautica Sinica,2016,37(1): 57-68. (in Chinese
    [8] 孙侠生,程文渊,穆作栋,等. 电动飞机发展白皮书[J]. 航空科学技术,2019,30(11): 1-7. SUN Xiasheng,CHENG Wenyuan,MU Zuodong,et al. White paper on the development of electric aircraft[J]. Aviation Science and Technology,2019,30(11): 1-7. (in Chinese doi: 10.19452/j.issn1007-5453.2019.11.001
    [9] 李开省. 电动飞机技术的发展研究[J]. 航空科学技术,2019,30(1): 1-7. LI Kaisheng. Research on the development of electric aircraft technology[J]. Aeronautical Science & Technology,2019,30(1): 1-7. (in Chinese doi: 10.19452/j.issn1007-5453.2019.30.001
    [10] 梁向东. 电动飞行器及其关键技术的研究探析[J]. 航空科学技术,2020,31(6): 1-6. LIANG Xiangdong. Research on electric vehicle and its key technology[J]. Aeronautical Science & Technology,2020,31(6): 1-6. (in Chinese doi: 10.19452/j.issn1007-5453.2020.06.001
    [11] 杨凤田,范振伟,项松,等. 中国电动飞机技术创新与实践观点[J]. 航空学报,2021,42(3): 624619.1-624619.6. YANG Fengtian,FAN Zhenwei,XIANG Song,et al. Technical innovation and practice of electric aircraft in China[J]. Acta Aeronautica et Astronautica Sinica,2021,42(3): 624619.1-624619.6. (in Chinese
    [12] MA Y,ZHANG W,ZHANG Y,et al. Sizing method and sensitivity analysis for distributed electric propulsion aircraft[J]. Journal of Aircraft,2020,57(4): 730-741. doi: 10.2514/1.C035581
    [13] SIQUEIRA S A, SKINNER P, IBRAHEM A M, et al. Design optimization of a closed box wing all-electric commuter aircraft concept[C]//AIAA Scitech 2019 Forum. San Diego: AIAA, 2019: 1-15
    [14] MONJON M, FREIRE C. Conceptual design and operating costs evaluation of a 19-seat all-electric aircraft for regional aviation[C]// AIAA Propulsion and Energy 2020 Forum. Virtual Event: AIAA, 2020: 1-16.
    [15] YANG B, LOU F, KEY N L. Conceptual design of a 10-passenger thin-haul electric aircraft[C]//AIAA Propulsion and Energy 2020 Forum. Virtual Event: AIAA, 2020: 1-18.
    [16] POSADA J A, VARGAS F. Mathematical correlations, method for the preliminary sizing, design and tests of an ultralight all-electric aircraft[C]// AIAA Propulsion and Energy 2020 Forum. Virtual Event: AIAA, 2020: 1-19.
    [17] 范振伟,杨凤田,李亚东,等. 某型双座电动飞机设计与试验[J]. 航空学报,2021,42(3): 623972.1-623972.11. FAN Zhenwei,YANG Fengtian,LI Yadong,et al. Design and test of two-seater electric aircraft[J]. Acta Aeronautica et Astronautica Sinica,2021,42(3): 623972.1-623972.11. (in Chinese
    [18] 康桂文,胡雨. 超轻型电动飞机电动力系统的参数匹配[J]. 航空动力学报,2013,28(12): 2641-2647. KANG Guiwen,HU Yu. Parameters matching of ultralight electric aircraft propulsion system[J]. Journal of Aerospace Power,2013,28(12): 2641-2647. (in Chinese doi: 10.13224/j.cnki.jasp.2013.12.002
    [19] 刘福佳,杨凤田,刘远强,等. 电动轻型飞机电推进系统选型与参数匹配[J]. 南京航空航天大学学报,2019,51(3): 350-356. LIU Fujia,YANG Fengtian,LIU Yuanqiang,et al. Selection and parameter matching of electric propulsion system for electric light aircraft[J]. Journal of Nanjing University of Aeronautics and Astronautics,2019,51(3): 350-356. (in Chinese doi: 10.16356/j.1005-2615.2019.03.012
    [20] 王刚,胡峪,宋笔锋,等. 电动无人机动力系统优化设计及航时评估[J]. 航空动力学报,2015,30(8): 1834-1840. WANG Gang,HU Yu,SONG Bifeng,et al. Optimal design and endurance estimation of propulsion system for electric-powered unmanned aerial vehicle[J]. Journal of Aerospace Power,2015,30(8): 1834-1840. (in Chinese doi: 10.13224/j.cnki.jasp.2015.08.006
    [21] 张茂权,陈海昕. 小型电动无人机航程航时估算模型[J]. 航空学报,2021,42(3): 625085.1-625085.9. ZHANG Maoquan,CHEN Haixin. Estimated model of range and endurance of small electric UAVs[J]. Acta Aeronautica et Astronautica Sinica,2021,42(3): 625085.1-625085.9. (in Chinese
    [22] RAYMER D P. Aircraft design: a conceptual approach, sixth edition[M]. Reston, US: AIAA Education Series, 2018.
    [23] LOFTIN L K, Jr. Subsonic aircraft: evolution and the matching of size to performance[M]. Virginia: NASA Reference Publication, 1980.
    [24] ROSKAM J. Airplane design: Part Ⅰ–Ⅶ [M]. Second edition. Lawrence: DARcorporation, 2003.
    [25] RIBOLDI C,GUALDONI F. An integrated approach to the preliminary weight sizing of small electric aircraft[J]. Aerospace Science and Technology,2016(58): 134-149.
    [26] TRAINELLI L, RIBOLDI C E, SALUCCI F, et al. A general preliminary sizing procedure for pure-electric and hybrid-electric airplanes[C]// 1st Aerospace Europe Conference (AEC 2020). Bordeaux: Association Aéronautique et Astronautique de France, 2020: 1-10.
    [27] 马一元,张炜,张星雨,等. 分布式电推进无人机总体参数设计方法研究[J]. 西北工业大学学报,2021,39(1): 27-35. MA Yiyuan,ZHANG Wei,ZHANG Xingyu,et al. Primary parameters design method for distributed electric propulsion unmanned aerial vehicle[J]. Journal of Northwestern Polytechnical University,2021,39(1): 27-35. (in Chinese doi: 10.3969/j.issn.1000-2758.2021.01.004
    [28] DE VRIES R,BROWN M,VOS R. Preliminary sizing method for hybrid-electric distributed-propulsion aircraft[J]. Journal of Aircraft,2019,56(6): 2172-2188. doi: 10.2514/1.C035388
    [29] SADRAEY M H. Aircraft design: a systems engineering approach[M]. Chichester: John Wiley & Sons, 2012.
    [30] POSADA J. Advances, challenges, and future of all-electric aircraft[C]// Proceedings of the 7th European Conference for Aeronautics and Space Sciences. Milan: EUCASS, 2017: 1-15.
    [31] HUNT A. Yuneec power drive 40 electric motor[EB/OL]. [2021-10-08].https: //en.wikipedia.org/wiki/Yuneec_Power_Drive_40.
    [32] HAUGAN T J. Development of superconducting and cryogenic power systems and impact for aircraft propulsion[C]//Energy Materials and Applications. Orlando: Air Force Research Laboratory, 2013: 1-67.
    [33] Eflyer. Eflyer 2 specifications[EB/OL]. [2021-10-15]. https://electricflyer.com/.
    [34] HUNT A, LACOSTE M, LALLEN B, et al. Bye aerospace eflyer 2[EB/OL]. [2021-10-15]. https://en.wikipedia.org/wiki/Bye_Aerospace_eFlyer_2#Specifications_(eFlyer_2).
    [35] Bye Aerospace. Eflyer 2 specs current as of september 2021[EB/OL]. [2021-10-15]. https: //byeaerospace.com/electric-airplane/.
    [36] Safran. Bye aerospace and safran announce cooperation agreement to equip eflyer all-electric aircraft with engineus electric smart motors[EB/OL]. [2021-10-15]. https://www.safran-group.com/pressroom/bye-aerospace-and-safran-announce-cooperation-agreement-equip-eflyer-all-electric-aircraft-2020-11-16.
    [37] Bye Aerospace. Eflyer 2 specifications[EB/OL]. [2021-10-15]. https://www.futureflight.aero/aircraft-program/eflyer.
    [38] Pipistrel. Taurus electro technical data[EB/OL]. [2021-10-23]. https://www.pipistrel-aircraft.com/aircraft/electric-flight/taurus-electro/#tab-id-2.
    [39] Pipistrel USA. Model taurus electro G2[EB/OL]. [2021-10-23].https: //www.pipistrel-usa.com/taurus-electro/#technical_data.
    [40] WIKIPEDIA. Pipistrel taurus[EB/OL]. [2022-09-17]. https://en.wikipedia.org/wiki/Pipistrel_Taurus#Specifications_(Taurus_M).
    [41] Pipistrel USA. Aircraft information taurus electro G2.5 2019[EB/OL]. [2021-10-23]. https://www.pipistrel-usa.com/wp-content/uploads/Pipistrel-Taurus-Electro-Information-Pack-R2.pdf
  • 加载中
图(9) / 表(7)
计量
  • 文章访问数:  288
  • HTML浏览量:  86
  • PDF量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-24
  • 网络出版日期:  2022-11-08

目录

    /

    返回文章
    返回