留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

缸内流动对对置活塞二冲程发动机换气效果的影响

王苏飞 章振宇 张付军

王苏飞, 章振宇, 张付军. 缸内流动对对置活塞二冲程发动机换气效果的影响[J]. 航空动力学报, 2023, 38(9):2129-2141 doi: 10.13224/j.cnki.jasp.20220094
引用本文: 王苏飞, 章振宇, 张付军. 缸内流动对对置活塞二冲程发动机换气效果的影响[J]. 航空动力学报, 2023, 38(9):2129-2141 doi: 10.13224/j.cnki.jasp.20220094
WANG Sufei, ZHANG Zhenyu, ZHANG Fujun. Effect of in-cylinder flow on gas exchange efficiency of opposed-piston 2-stroke engines[J]. Journal of Aerospace Power, 2023, 38(9):2129-2141 doi: 10.13224/j.cnki.jasp.20220094
Citation: WANG Sufei, ZHANG Zhenyu, ZHANG Fujun. Effect of in-cylinder flow on gas exchange efficiency of opposed-piston 2-stroke engines[J]. Journal of Aerospace Power, 2023, 38(9):2129-2141 doi: 10.13224/j.cnki.jasp.20220094

缸内流动对对置活塞二冲程发动机换气效果的影响

doi: 10.13224/j.cnki.jasp.20220094
详细信息
    作者简介:

    王苏飞(1990-),男,博士生,主要从事内燃机进排气及燃烧研究

    通讯作者:

    张付军(1966-),男,教授、博士生导师,博士,主要从事发动机电控相关研究。E-mail:zfj123@bit.edu.cn

  • 中图分类号: V234;TK421

Effect of in-cylinder flow on gas exchange efficiency of opposed-piston 2-stroke engines

  • 摘要:

    换气过程中的缸内流动及废气分布对对置活塞二冲程(OP2S)发动机换气效果的影响规律目前缺乏充分的研究。采用CONVERGE建立了OP2S发动机的CFD模型并通过仿真计算研究了扫气口倾角、扫气口构型及转速通过改变扫气气流组织影响换气效果的规律。结果表明扫气口倾角对OP2S发动机缸内流动有显著且非单调的影响。扫气口倾角$ \mathrm{\alpha } $≤5°时,扫气气流聚集于气缸轴线,缸壁附近存在周边废气滞留区;当扫气口倾角$ \mathrm{\alpha } $>5°时,换气过程初期扫气气流在扫气口附近汇聚为环状进气涡流,在该进气涡流中心产生低压区,并导致气缸中心流动方向与外围的扫气气流方向相反,最终导致气缸轴线出现柱状的中心废气滞留区。随着扫气口倾角增大,周边滞留区逐渐减小消失,而中心滞留区出现并增强,两者的变化规律共同造成了残余废气系数的非单调变化规律。大扫气口倾角下复合式气口的扫气气流可兼顾气缸中心和外围,换气效果显著优于单层气口。相较于倒置组合气口,组合气口的缸内流动组织更为合理,扫气效率更高。

     

  • 图 1  OP2S发动机气缸结构

    Figure 1.  Cylinder structure of OP2S engine

    图 2  扫气口倾角

    Figure 2.  Scavenge port angle

    图 3  三种扫气口结构

    Figure 3.  Three different scavenge ports

    图 4  单元尺寸为1.4~4 mm的计算结果对比

    Figure 4.  Comparison of computational results from cell size 1.4—4 mm

    图 5  模型验证

    Figure 5.  Model validation

    图 6  转速及扫气口结构对残余废气系数的影响

    Figure 6.  Effect of engine speed and scavenge port structure on residual ratio

    图 7  缸内中心低压区的建立过程(N=4500 r/min,α=20°)

    Figure 7.  Establishing of central low-pressure area (N=4500 r/min,α=20°)

    图 8  曲轴转角上止点后168°时刻扫气口倾角对缸内轴向速度分布的影响(N=4500 r/min)

    Figure 8.  Effect of scavenge port angle on axial velocity distribution at 168° after top dead center (N=4500 r/min)

    图 9  扫气口倾角对换气过程中缸内废气分布的影响(N=4500 r/min)

    Figure 9.  Effect of scavenge port angle on residual distribution during scavenging (N=4500 r/min)

    图 10  转速对换气过程中缸内废气分布的影响(α=20°)

    Figure 10.  Effect of engine speed on residual distribution during scavenging (α=20°)

    图 11  扫气口倾角对组合气口缸内当量比分布的影响(N=1500 r/min)

    Figure 11.  Effect of scavenge port angle on equivalence ratio distribution for composite port (N=1500 r/min)

    图 12  扫气口倾角对组合气口缸内轴向速度分布的影响(N=1500 r/min)

    Figure 12.  Effect of scavenge port angle on axial velocity distribution for composite port (N=1500 r/min)

    图 13  扫气口倾角对倒置组合气口缸内当量比分布的影响(N=1500 r/min)

    Figure 13.  Effect of scavenge port angle on equivalence ratio distribution for reversed composite port (N=1500 r/min)

    图 14  扫气口倾角对倒置组合气口缸内轴向速度分布的影响(N=1500 r/min)

    Figure 14.  Effect of scavenge port angle on axial velocity distribution for reversed composite port (N=1500 r/min)

  • [1] PIRAULT J P, FLINT M. Opposed piston engines: evolution, use, and future applications[M]. Warrendale, US: SAE International, 2010.
    [2] HOFBAUER P. Opposed piston opposed cylinder (opoc) engine for military ground vehicles[C]//proceedings of the 2005 SAE World Congress. Detroit, US: SAE International, 2005.
    [3] FRANKE M, HUANG H, LIU J P, et al. Opposed piston opposed cylinder (opoc™) 450 hp engine: performance development by cae simulations and testing[C]//Proceedings of the 2006 SAE World Congress. Detroit, US: SAE International, 2006.
    [4] KALKSTEIN J, RÖVER W, CAMPBELL B, et al. Opposed piston opposed cylinder (opoc™) 5/10 kW heavy fuel engine for UAVs and APUs[C]//Proceedings of the 2006 SAE World Congress. Detroit, US: SAE International, 2006.
    [5] 董雪飞,赵长禄,胡清欣,等. 对置活塞二冲程发动机机械增压匹配分析[J]. 北京理工大学学报,2014,34(2): 132-137.

    DONG Xuefei,ZHAO Changlu,HU Qingxin,et al. The matching analysis of supercharging of opposed-piston two-stroke engine[J]. Transactions of Beijing Institue of Technology,2014,34(2): 132-137. (in Chinese)
    [6] 董雪飞. 对置活塞二冲程柴油机换气过程及增压匹配研究 [D]. 北京: 北京理工大学, 2015.

    DONG Xuefei. Research on scavenging process and turbocharging matching of an opposed-piston two-stroke diesel engine[D]. Beijing: Beijing Institue of Technology, 2015. (in Chinese)
    [7] 董雪飞,赵长禄,张付军,等. 对置活塞二冲程柴油机换气过程的试验[J]. 内燃机学报,2015,33(4): 362-369.

    DONG Xuefei,ZHAO Changlu,ZHANG Fujun,et al. Experiment on the scavenging Process of opposed-piston two-stroke diesel engine[J]. Transactions of CSICE,2015,33(4): 362-369. (in Chinese)
    [8] 董雪飞,赵长禄,张付军,等. 对置活塞二冲程发动机耗气特性研究[J]. 内燃机工程,2016,37(6): 216-221.

    DONG Xuefei,ZHAO Changlu,ZHANG Fujun,et al. Study on the gas consumption characteristics of an opposed-piston two-stroke engine[J]. Chinese Internal Combustion Engine Engineering,2016,37(6): 216-221. (in Chinese)
    [9] 董雪飞,赵长禄,赵振峰. 进排气压力对增压对置活塞二冲程发动机的影响研究[J]. 内燃机工程,2016,37(4): 28-32.

    DONG Xuefei,ZHAO Changlu,ZHAO Zhenfeng. Study on influence of intake or exhaust pressure on turbocharged opposed-piston two-stroke engine[J]. Chinese Internal Combustion Engine Engineering,2016,37(4): 28-32. (in Chinese)
    [10] 李浩. 无人机用对置活塞二冲程内燃机换气系统的仿真分析和优化 [D]. 哈尔滨: 哈尔滨工业大学, 2020.

    LI Hao. Simulation and optimization of opposed piston two-stroke engine ventilation system for UAV[D]. Harbin: Harbin Institute of Technology, 2020. (in Chinese)
    [11] 夏孝朗. 新型二冲程柴油机性能研发关键技术研究[D]. 长沙: 湖南大学, 2013.

    XIA Xiaolang. Study on the key technologies of the opposed piston opposed cylinder two stroke diesel engine[D]. Changsha: Hunan University, 2013. (in Chinese)
    [12] LUO W,LIU H,LIU L,et al. Effects of scavenging port angle and combustion chamber geometry on combustion and emmission of a high-pressure direct-injection natural gas marine engine[J]. International Journal of Green Energy,2022,1(1): 1-13. doi: 10.54097/ije.v1i1.2021
    [13] LIU H,MA J,TONG L,et al. Investigation on the potential of high efficiency for internal combustion engines[J]. Energies,2018,11(3): 513-532. doi: 10.3390/en11030513
    [14] MIKALSEN R,ROSKILLY A P. The design and simulation of a two-stroke free-piston compression ignition engine for electrical power generation[J]. Applied Thermal Engineering,2008,28(5): 589-600.
    [15] GRABOWSKI Ł,PIETRYKOWSKI K,KARPIŃSKI P. The zero-dimensional model of the scavenging process in the opposed-piston two-stroke aircraft diesel engine[J]. Propulsion and Power Research,2019,8(4): 300-309. doi: 10.1016/j.jppr.2019.11.003
    [16] 章振宇,赵振峰,张付军,等. 对置二冲程柴油机扫气口参数对扫气过程的影响[J]. 内燃机工程,2014,35(5): 119-124.

    ZHANG Zhenyu,ZHAO Zhenfeng,ZHANG Fujun,et al. Influence of scavenging port parameters on scavenging process in opposed-piston two-stroke diesel engine[J]. Chinese Internal Combustion Engine Engineering,2014,35(5): 119-124. (in Chinese)
    [17] 王豪,赵振峰,王斌,等. 滚流燃烧室对对置活塞二冲程汽油机工作过程的影响[J]. 小型内燃机与车辆技术,2015,44(3): 17-22.

    WANG Hao,ZHAO Zhenfeng,WANG Bin,et al. Effect of tumble combustion chamber on working process of opposed-piston two-stroke gasoline engine[J]. Small Internal Combustion Engine and Vehicle Technique,2015,44(3): 17-22. (in Chinese)
    [18] 吴丹. 对置活塞二冲程柴油机换气过程研究[D]. 北京: 北京理工大学, 2015.

    WU Dan. Investigation on the gas exchange progress of an opposed-piston two-stroke diesel engine[D]. Beijing: Beijing Institute of Technology, 2015. (in Chinese)
    [19] LIU Y,ZHANG F,ZHAO Z,et al. Study on the synthetic scavenging model validation method of opposed-piston two-stroke diesel engine[J]. Applied Thermal Engineering,2016,104: 184-192. doi: 10.1016/j.applthermaleng.2016.03.094
    [20] 马富康, 赵长禄, 赵振峰, 等. 对置活塞二冲程汽油机直流扫气系统参数研究 [J]. 内燃机工程, 2016, 37(5): 152-159.

    MA Fukang, ZHAO Changlu, ZHAO Zhenfeng, et al. In-cylinder tumble organization and utilization of an opposed-piston two-stroke gasoline engine[J]. Chinese Internal Combustion Engine Engineering, 2016, 37(5): 152-159. (in Chinese)
    [21] MATTARELLI E, RINALDINI C, SAVIOLI T, et al. Scavenge ports ooptimization of a 2-stroke opposed piston diesel engine [EB/OL]. [2022.07.15]. https: //doi.org/10.4271/2017-24-0167
    [22] YANG W,LI X-R,KANG Y-N,et al. Evaluating the scavenging process by the scavenging curve of an opposed-piston, two-stroke (OP2S) diesel engine[J]. Applied Thermal Engineering,2019,147: 336-346. doi: 10.1016/j.applthermaleng.2018.10.095
    [23] XIE Z, ZHAO Z, ZHANG Z. Numerical simulation of an opposed-piston two-stroke diesel engine[EB/OL]. [2022.07.15]. https: //doi.org/10.4271/2015-01-0404
    [24] 许汉君,宋金瓯,姚春德. 对置二冲程柴油机缸内流动形式对混合气形成及燃烧的模拟研究[J]. 内燃机学报,2009,27(5): 395-400.

    XU Hanjun,SONG Jinou,YAO Chunde. Simulation on in-cylinder flow on mixture formation and combustion in OPOC engine[J]. Transactions of CSICE,2009,27(5): 395-400. (in Chinese)
    [25] 陈文婷,诸葛伟林,张扬军,等. 双对置二冲程柴油机扫气过程仿真研究[J]. 航空动力学报,2010,25(6): 1322-1326. doi: 10.13224/j.cnki.jasp.2010.06.021

    CHEN Wenting,ZHUGE Weilin,ZHANG Yangjun,et al. Simulation on the scavenging process of the opposite two-stroke diesel engine[J]. Journal of Aerospace Power,2010,25(6): 1322-1326. (in Chinese) doi: 10.13224/j.cnki.jasp.2010.06.021
    [26] 裴玉姣. 对置活塞式二冲程柴油机直流扫气过程仿真分析及优化[D]. 太原: 中北大学, 2013.

    PEI Yujiao. Analysis and optimization on the uniflow scavenging process for the opposed piston two stroke diesel engine[D]. Taiyuan: North University of China, 2013. (in Chinese)
    [27] 邹玉红. 对置二冲程柴油机的扫气研究[D]. 北京: 清华大学, 2016.

    ZOU Yuhong. Research on the scavenging process of the opposed piston opposed cylinder two stroke diesel engine[D]. Beijing: Tsinghua University, 2016. (in Chinese)
    [28] 邹玉红,卢勇,裴普成,等. 双对置二冲程柴油机扫气过程的进气口结构影响规律[J]. 西安交通大学学报,2016,50(1): 47-52.

    ZOU Yuhong,LU Yong,PEI Pucheng,et al. Influence of intake port structure on opposed piston opposed cylinder two stroke diesel engine scavenging process[J]. Journal of Xi’an Jiaotong University,2016,50(1): 47-52. (in Chinese)
    [29] HE Changming, XU Sichuan. Transient gas exchange simulation and uniflow scavenging analysis for a unique opposed piston diesel engine[C]//Proceedings of the 2016 SAE World Congress. Detroit, US: SAE International, 2016.
  • 加载中
图(14)
计量
  • 文章访问数:  182
  • HTML浏览量:  69
  • PDF量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-28
  • 网络出版日期:  2023-02-11

目录

    /

    返回文章
    返回