留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于飞发一体化模型的射流预冷技术优势分析

栗孟晨 徐国强 闻洁 庄来鹤 黄聪聪

栗孟晨, 徐国强, 闻洁, 等. 基于飞发一体化模型的射流预冷技术优势分析[J]. 航空动力学报, 2023, 38(9):2167-2176 doi: 10.13224/j.cnki.jasp.20220095
引用本文: 栗孟晨, 徐国强, 闻洁, 等. 基于飞发一体化模型的射流预冷技术优势分析[J]. 航空动力学报, 2023, 38(9):2167-2176 doi: 10.13224/j.cnki.jasp.20220095
LI Mengchen, XU Guoqiang, WEN Jie, et al. Superiority analysis of mass injection pre-compressor cooling technology based on aircraft-engine integration model[J]. Journal of Aerospace Power, 2023, 38(9):2167-2176 doi: 10.13224/j.cnki.jasp.20220095
Citation: LI Mengchen, XU Guoqiang, WEN Jie, et al. Superiority analysis of mass injection pre-compressor cooling technology based on aircraft-engine integration model[J]. Journal of Aerospace Power, 2023, 38(9):2167-2176 doi: 10.13224/j.cnki.jasp.20220095

基于飞发一体化模型的射流预冷技术优势分析

doi: 10.13224/j.cnki.jasp.20220095
详细信息
    作者简介:

    栗孟晨(1997-),男,硕士生,主要从事航空发动机整机热管理方面的研究

    通讯作者:

    闻洁(1964-),女,研究员、博士生导师,博士,主要从事传热传质、发动机整机综合热管理、发动机高温部件冷却研究。E-mail: wenjie@buaa.edu.cn

  • 中图分类号: V231.12

Superiority analysis of mass injection pre-compressor cooling technology based on aircraft-engine integration model

  • 摘要:

    为探索射流预冷技术在未来先进航空动力上的应用前景,基于涡喷发动机建立飞发一体化性能仿真计算模型,并选取水作为预冷剂,分析不同飞行状态与预冷方案对飞机作战性能、发动机热力性能及热端部件温度的影响规律。结果表明:启用射流预冷技术可有效增加发动机推力,提升飞机的爬升性能与加速性能,帮助飞机在规定任务内减少机动时间与载荷消耗,同时预冷技术可提升压气机末级引气冷却品质,从而降低涡轮叶片表面温度,增强发动机可靠性。在飞发推力匹配条件与涡轮叶片表面温度约束下,射流预冷可有效提升飞机的极限飞行能力,当预冷剂流量为1 kg/s时,飞机理论升限与最大马赫数分别提升11.67%和10.51%。

     

  • 图 1  飞机性能计算模型计算流程

    Figure 1.  Process of aircraft performance calculation model

    图 2  飞机受力分析图[20]

    Figure 2.  Force analysis of aircraft[20]

    图 3  升阻特性计算结果

    Figure 3.  Calculation result of lift-drag characteristic

    图 4  单轴涡喷发动机特征截面示意图

    Figure 4.  Characteristic section of uniaxial turbojet engine

    图 5  射流预冷简化模型示意图

    Figure 5.  Simplified model of mass injection pre-compressor cooling

    图 6  模型与GasTurb软件的性能计算结果对比

    Figure 6.  Comparison of caculation results between model and GasTurb

    图 7  不同高度与预冷剂流量下爬升率与推力变化

    Figure 7.  Variation of climb rate and thrust with different heights and flow rates of coolant

    图 8  不同高度与预冷剂流量下进气流量与耗油率变化

    Figure 8.  Variation of flow rate of engine and specific fuel consumption with different heights and flow rates of coolant

    图 9  不同高度与预冷剂流量下机动时间与耗水量变化

    Figure 9.  Variation of mission time and water consumption with different heights and flow rates of coolant

    图 10  不同高度与预冷剂流量下耗油量与水油消耗量变化

    Figure 10.  Variation of fuel consumption and payload consumption with different heights and flow rates of coolant

    图 11  不同马赫数与预冷剂流量下加速度与推力变化

    Figure 11.  Variation of accelerated speed and thrust with different Mach numbers and flow rates of coolant

    图 12  不同马赫数与预冷剂流量下机动时间与水油消耗量变化

    Figure 12.  Variation of mission time and payload consumption with different Mach numbers and flow rates of coolant

    图 13  发动机内部温度随预冷剂流量的变化

    Figure 13.  Temperature of aero-engine interior with different flow rates of coolant

    图 14  理论升限与马赫数随预冷剂流量的变化

    Figure 14.  Variation of theoretical ceiling and Mach number with different flow rates of coolant

    图 15  不同飞行状态下供给推力比与叶片表面温度的变化

    Figure 15.  Variation of supply ratio of thrust and blade surface temperature under different flight conditions

    表  1  设计点循环参数取值

    Table  1.   Cycle parameters of design point

    循环参数H=0 km, Ma=0H=11 km, Ma=0.9
    进口流量/(kg/s)12535
    压气机压比126.85
    涡轮前温度/K1 8501 200
    最高涡轮前温度/K2 0002 000
    燃烧效率0.9990.975
    压气机绝热效率0.80.79
    涡轮绝热效率0.90.88
    涡轮导叶引气比例/%99
    涡轮动叶引气比例/%66
    飞机引气比例/%11
    下载: 导出CSV

    表  2  设计点模型验证

    Table  2.   Validation of design points

    设计点性能参数模型GasTurb误差/%
    1推力/kN126.69126.96−0.21 
    耗油率/(kg/(N·h))0.11170.10961.92 
    2推力/kN18.0518.11−0.33 
    耗油率/(kg/(N·h))0.11960.11622.93 
    下载: 导出CSV

    表  3  发动机非设计点

    Table  3.   Off-design points of the aero-engine

    非设计点飞机状态H/kmMa发动机工作状态
    1起飞滑跑00.1加力最大状态
    2低空爬升50.5最大状态
    3亚声速巡航110.9巡航状态
    4超声速巡航111.5巡航状态
    5近实用升限202.5加力最大状态
    下载: 导出CSV
  • [1] DAI Jian,ZUO Qiuru. Key technologies for thermodynamic cycle of precooled engines: a review[J]. Acta Astronautica,2020,177: 299-312. doi: 10.1016/j.actaastro.2020.07.039
    [2] MURTHY S N B. Developments in high-speed vehicle propulsion systems[M]. Reston, VA, US: AIAA, 1996: 698-712.
    [3] WANG Zhenguo,WANG Yuan,ZHANG Jianqiang,et al. Overview of the key technologies of combined cycle engine precooling systems and the advanced applications of micro-channel heat transfer[J]. Aerospace Science and Technology,2014,39: 31-39. doi: 10.1016/j.ast.2014.08.008
    [4] BARON B, DOWMAN H W, DACKIS W C. Experimental investigation of thrust augmentation of axial-flow-type 4000-pound-thrust turbojet engine by water and alcohol injection at compressor inlet[R]. NACA-RM-E7K14, 1948.
    [5] WILCOX E C, TROUT E W. Analysis of thrust augmentation of turbojet engines by water injection at compressor inlet including charts for calculating compression processes with water injection[R]. NACA TR-1006, 1951.
    [6] BEKE A. Analytical investigation of the effect of water injection on supersonic turbojet-engine-inlet matching and thrust augmentation[R]. NACA TN-3922, 1957.
    [7] EDWARDS Z B, NEELY J, WARD T R. Investigation of the effect of pre-compressor evaporative cooling on the performance of a J57-P11 turbojet engine[R]. AEDC-TN-58-7, 1958.
    [8] KING L D. Design and testing of a pre-compressor cooling system for a high speed aircraft[R]. Texas: Chase Vought Corporation, 1961.
    [9] KIRKLAND F P. Water spray system development test final report[R]. Fort Worth, US: General Dynamics Fort Worth Division, FZT-628-005, 1975.
    [10] CARTER P, BALEPIN V, SPATH T, et al. MIPCC technology development [R]. AIAA 2003-6929, 2003.
    [11] 刘旭峰,常鸿雯,薛洪科,等. 射流预冷装置温降与流阻特性试验研究[J]. 航空发动机,2018,44(2): 81-86. doi: 10.13477/j.cnki.aeroengine.2018.02.014

    LIU Xufeng,CHANG Hongwen,XUE Hongke,et al. Investigation on temperature drop and flow resistance characteristics of mass injection pre-compressor cooling device[J]. Aeroengine,2018,44(2): 81-86. (in Chinese) doi: 10.13477/j.cnki.aeroengine.2018.02.014
    [12] 涂洪妍,邓远灏,康松,等. 水气比对射流预冷喷射特性影响的数值研究[J]. 推进技术,2017,38(6): 1302-1309. doi: 10.13675/j.cnki.tjjs.2017.06.013

    TU Hongyan,DENG Yuanhao,KANG Song,et al. Numerical simulation for effects for water/air ratio on injection characteristics with water injection pre-compressor cooling[J]. Journal of Propusion Technology,2017,38(6): 1302-1309. (in Chinese) doi: 10.13675/j.cnki.tjjs.2017.06.013
    [13] LIN Aqiang,ZHOU Jie,HAMZA F,et al. Evaluation of mass injection cooling on flow and heat transfer characteristics for high-temperature inlet air in a MIPCC engine[J]. International Journal of Heat and Mass Transfer,2019,135: 620-630. doi: 10.1016/j.ijheatmasstransfer.2019.02.025
    [14] 陆禹铭,徐倩楠,吴锋,等. 喷水射流预冷对发动机进气温度及流场变化影响的数值研究[J]. 推进技术,2020,41(9): 1999-2010. doi: 10.13675/j.cnki.tjjs.190819

    LU Yuming,XU Qiannan,WU Feng,et al. Numerical study on effects of water injection pre-compressor cooling on engine inlet temperature and flow field change[J]. Journal of Propusion Technology,2020,41(9): 1999-2010. (in Chinese) doi: 10.13675/j.cnki.tjjs.190819
    [15] 商旭升,蔡元虎,陈玉春,等. 高速飞行器用射流预冷却涡轮基发动机性能模拟[J]. 中国空间科学技术,2005,25(4): 54-58. doi: 10.3321/j.issn:1000-758X.2005.04.009

    SHANG Xusheng,CAI Yuanhu,CHEN Yuchun,et al. Performance simulation of the mass injection pre-cooled TBCC engine for hypersonic vehicles[J]. Chinese Space Science and Technology,2005,25(4): 54-58. (in Chinese) doi: 10.3321/j.issn:1000-758X.2005.04.009
    [16] MEHTA U,BOWLES J,MELTON J,et al. Water injection pre-compressor cooling assist space access[J]. The Aeronautical Journal,2015,119(1212): 145-171. doi: 10.1017/S0001924000010319
    [17] DAVID A B N,UYIOGHOSA I. Aero engine compressor cooling by water injection: Part 1 evaporative compressor model[J]. Energy,2018,160: 1224-1235. doi: 10.1016/j.energy.2018.05.170
    [18] DAVID A B N,UYIOGHOSA I. Aero engine compressor cooling by water injection: Part 2 performance and emission reductions[J]. Energy,2018,160: 1236-1243. doi: 10.1016/j.energy.2018.05.171
    [19] XIONG Yuefei,QIN Jiang,CHENG Kunlin,et al. Influence of water injection on performance of scramjet engine[J]. Energy,2020,201: 117477.1-117477.10. doi: 10.1016/j.energy.2020.117477
    [20] MATTINGLY J D. Aircraft engine design, Second edition[M]. Reston, US: AIAA, 2002.
    [21] 沙正平. 飞机设计手册: 第4册 军用飞机总体设计[M]. 北京: 航空工业出版社, 2005.
    [22] WILCOCK R C,YOUNG J B,HORLOCK J H. The effect of turbine blade cooling on the cycle efficiency of gas turbine power cycles[J]. Journal of Engineering for Gas Turbines and Power,2005,127(1): 109-120. doi: 10.1115/1.1805549
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  210
  • HTML浏览量:  61
  • PDF量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-28
  • 网络出版日期:  2023-04-11

目录

    /

    返回文章
    返回