Numerical comparative analysis of suppression effect of nozzlebaffle and regenerative cooling fin baffle on high-frequency unstable combustion
-
摘要:
基于三维URANS(unsteady reynolds-averaged Navier-Stokes)模型对全尺寸液氧/煤油火箭发动机高频燃烧不稳定开展了仿真计算。研究了3种隔板对高频切向燃烧不稳定的抑制效果,发现当隔板长度为30 mm时,喷嘴式隔板能有效抑制燃烧不稳定,而两种再生冷却肋片隔板未能完全抑制燃烧不稳定,增加隔板长度到50 mm后,燃烧趋于稳定。结果表明:较短隔板不能完全包络化学反应区域,推进剂纵向分布变化对燃烧不稳定的抑制作用相对较小;隔板增长后,能有效分割燃烧室头部化学反应区域,提升了燃烧稳定性裕度;喷嘴式隔板能抑制切向燃烧不稳定的机理在于隔板喷嘴壁面上存在一个大黏性、大剪切力的黏性影响区。研究结果可为液体火箭发动机隔板设计提供一定指导。
Abstract:Based on the 3D URANS (unsteady reynolds-averaged Navier-Stokes) model, the high-frequency combustion instability of a full-scale liquid oxygen/kerosene rocket engine was simulated. The suppression effects of three kinds of baffles on high frequency tangential combustion instability were studied. When the length of baffles was 30 mm, the nozzle baffle can effectively suppress the combustion instability, meanwhile regenerative cooling fin baffles cannot completely suppress the combustion instability. After increasing the length of baffles to 50 mm, the combustion became stable. The results showed that the short baffle cannot completely envelop the chemical reaction area, and the longitudinal distribution of propellant had relatively little inhibitory effect on the combustion instability. After the length of baffles was increased, it can effectively divide the chemical reaction area at the head of the combustion chamber, which improved the combustion stability margin. The mechanism for the nozzle baffle to suppress the tangential combustion instability is that there is a viscous influence zone with large viscosity and large shear force on the nozzle wall of the baffle. Research results can provide some guidance for the design of baffles in the liquid rocket engine.
-
表 1 全尺寸发动机网格边界条件
Table 1. Full-scale engine mesh boundary conditions
编号 名称 边界条件 1 喷嘴 质量流量入口 2 喷注面板 无滑移绝热壁面 3 发动机侧壁面 无滑移绝热壁面 4 喷管出口 压力出口 表 2 5个算例下的隔板类型和长度
Table 2. Baffle type and length for five studies
算例 隔板类型 隔板长度/mm Case 1 Baffle 1 30 Case 2 Baffle 2 30 Case 3 Baffle 3 30 Case 4 Baffle 2 50 Case 5 Baffle 3 50 表 3 Case 2和case 3计算结果对比
Table 3. Comparison of results between case 2 and case 3
算例 压力振幅
Δp/MPa压力振幅占比
平均室压(Δp/p)/%振荡主频
f0/HzCase 2 5.69 43.2 3420 Case 3 5.78 43.9 3475 -
[1] 郭康康. 液氧/煤油火箭发动机高频燃烧不稳定性数值研究[D]. 北京: 航天工程大学, 2018.GUO Kangkang. Numerical investigation of high frequency combustion instability LOx/kero liquid rocket engine[D]. Beijing: University of Aeronautics and Astronautics, 2018. (in Chinese) [2] 聂万胜, 丰松江. 液体火箭发动机燃烧动力学模型与数值计算[M]. 北京: 国防工业出版社, 2011. [3] 汪广旭,谭永华,陈建华,等. 液体火箭发动机非稳态燃烧过程对其稳定性的影响[J]. 航空动力学报,2019,34(4): 929-936. doi: 10.13224/j.cnki.jasp.2019.04.022WANG Guangxu,TAN Yonghua,CHEN Jianhua,et al. Influence of liquid rocket engine unsteady combustion process on its stability[J]. Journal of Aerospace Power,2019,34(4): 929-936. (in Chinese) doi: 10.13224/j.cnki.jasp.2019.04.022 [4] 董蒙,谭永华,邢理想,等. 液体火箭发动机供应系统频率特性[J]. 航空动力学报,2023,38(1): 230-239. doi: 10.13224/j.cnki.jasp.20210363DONG Meng,TAN Yonghua,XING Lixiang,et al. Frequency characteristics of liquid rocket engine supply system[J]. Journal of Aerospace Power,2023,38(1): 230-239. (in Chinese) doi: 10.13224/j.cnki.jasp.20210363 [5] GUO K,REN Y,CHEN P,et al. Analysis of spontaneous longitudinal combustion instability in an O2/CH4 single-injector rocket combustor[J]. Aerospace Science and Technology,2021,119: 1270-9638. [6] 杨V, 安德松W E. 液体火箭发动机燃烧不稳定性[M]. 张宝炯, 洪鑫, 陈杰, 等, 译. 北京: 科学出版社, 2001. [7] 马列波,聂万胜. 隔板片数量对液体火箭发动机燃烧不稳定性的影响[J]. 导弹与航天运载技术,2020(6): 27-32. doi: 10.7654/j.issn.1004-7182.20200606MA Liebo,NIE Wansheng. The effect of the number of separators on the combustion instability of a liquid rocket engine[J]. Missile and Space Vehicle Technology,2020(6): 27-32. (in Chinese) doi: 10.7654/j.issn.1004-7182.20200606 [8] JOSEGPH A D, SANTIAGO E P, JOHN M Q. Baffle blade acoustic damping[R]. AIAA 2021-3573, 2021 [9] GUO K K, NIE W S, LIU Y, et al. Numerical simulation of damping capacity between injector formed baffle and normal blade baffle in a kero/LOX liquid rocket engine[C]//Proceedings of 2017 International Conference on Advances in Materials, Machinery, Electrical Engineering (AMMEE 2017). Amsterdam: Atlantis Press, 2017, 576-585. [10] 刘旺,李敬轩,杨立军. 隔板喷嘴对燃烧室切向声学模态作用研究[J]. 推进技术,2019,40(6): 1348-1353. doi: 10.13675/j.cnki.tjjs.180362LIU Wang,LI Jingxuan,YANG Lijun. Research on the effect of diaphragm nozzle on tangential acoustic mode of combustion chamber[J]. Journal of Propulsion Technology,2019,40(6): 1348-1353. (in Chinese) doi: 10.13675/j.cnki.tjjs.180362 [11] 高得昆, 覃建秀, 张会强. 具有气液同轴喷嘴的液体火箭发动机燃烧室压力振荡及其声学特性研究[J/OL]. [2022-03-02]. https://kns-cnki-net-s.nudtproxy.yitlink.com:443/kcms/detail/11.1813.V.20211210.2314.007.html.GAO Dekun, QIN Jianxiu, ZHANG Huiqiang. Research on pressure oscillation and acoustic characteristics of liquid rocket engine combustion chamber with gas-liquid coaxial nozzle[J/OL]. [2022-03-02]. https://kns-cnki-net-s.nudtproxy.yitlink.com:443/kcms/detail/11.18 13. V.20211210.2314.007.html. (in Chinese) [12] 冯伟,聂万胜,李斌,等. 模型燃烧室内不稳定燃烧发展过程的数值分析[J]. 北京航空航天大学学报,2016,42(6): 1195-1202. doi: 10.13700/j.bh.1001-5965.2015.0457FENG Wei,NIE Wansheng,LI Bin,et al. Numerical analysis of unstable combustion development in a model combustion chamber[J]. Journal of Beijing University of Aeronautics and Astronautics,2016,42(6): 1195-1202. (in Chinese) doi: 10.13700/j.bh.1001-5965.2015.0457 [13] 庄逢辰. 液体火箭发动机喷雾燃烧的理论、模型及应用[M]. 长沙: 国防科技大学出版社, 1995. [14] MOUKALLED F, MANGANI L, DARWISH M. The finite volume method in computational fluid dynamics: an advanced introduction with OpenFOAM and Matlab[M]. New York: Springer Publishing Company, Incorporated, 2015. [15] GUO Kangkang, XU Boqi, REN Yongjie, et al. Analysis of tangential combustion instability modes in a LOx/kerosene liquid rocket engine based on OpenFOAM[J/OL]. [2022-03-02].https: // www.frontiersin.org/articles/10.3389/fenrg.2021.810439. [16] 冯伟. 液体火箭发动机高频燃烧不稳定性研究[D]. 北京: 装备学院, 2016.FENG Wei. Research on high frequency combustion instability of liquid rocket engine[D]. Beijing: Equipment College, 2016. (in Chinese) [17] 蔡国飙, 李家文, 田爱梅. 液体火箭发动机设计[M]. 北京: 北京航空航天大学出版社, 2011. [18] PARK I S,SOHN C H,HONG J K. Acoustic damping enhanced by gaps in baffled injectors in an acoustic chamber[J]. Journal of Sound & Vibration,2011,330(12): 2747-2757. [19] 陶文铨. 数值传热学[M]. 西安: 西安交通大学出版社, 2003. -