留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于TSFFCNN-PSO-SVM的飞机起落架液压系统故障诊断

冯东洋 姜春英 鲁墨武 叶长龙 李胜宇

冯东洋, 姜春英, 鲁墨武, 等. 基于TSFFCNN-PSO-SVM的飞机起落架液压系统故障诊断[J]. 航空动力学报, 2024, 39(1):20220111 doi: 10.13224/j.cnki.jasp.20220111
引用本文: 冯东洋, 姜春英, 鲁墨武, 等. 基于TSFFCNN-PSO-SVM的飞机起落架液压系统故障诊断[J]. 航空动力学报, 2024, 39(1):20220111 doi: 10.13224/j.cnki.jasp.20220111
FENG Dongyang, JIANG Chunying, LU Mowu, et al. Fault diagnosis of aircraft landing gear hydraulic system based on TSFFCNN-PSO-SVM[J]. Journal of Aerospace Power, 2024, 39(1):20220111 doi: 10.13224/j.cnki.jasp.20220111
Citation: FENG Dongyang, JIANG Chunying, LU Mowu, et al. Fault diagnosis of aircraft landing gear hydraulic system based on TSFFCNN-PSO-SVM[J]. Journal of Aerospace Power, 2024, 39(1):20220111 doi: 10.13224/j.cnki.jasp.20220111

基于TSFFCNN-PSO-SVM的飞机起落架液压系统故障诊断

doi: 10.13224/j.cnki.jasp.20220111
基金项目: 辽宁省自然科学基金(2019-KF-01-11)
详细信息
    作者简介:

    冯东洋(1996-),男,硕士生,主要从事航空航天领域关于液压技术与故障诊断方面的工作

    通讯作者:

    姜春英(1978-),女,副教授、硕士生导师,博士,主要从事空天装备与测控技术研究工作。E-mail:99448588@qq.com

  • 中图分类号: V37;TP227

Fault diagnosis of aircraft landing gear hydraulic system based on TSFFCNN-PSO-SVM

  • 摘要:

    针对飞机起落架液压系统故障诊断精度低,深层故障特征提取困难的问题,提出了一种基于双路特征融合卷积神经网络(TSFFCNN)与粒子群优化支持向量机(PSO-SVM)结合的起落架液压系统故障诊断模型。该诊断模型以起落架多节点压力信号作为输入,采用一维卷积神经网络(1DCNN)与二维卷积神经网络(2DCNN)并行多通道网络结构自适应提取深层特征信息,并在融合层将深层特征信息融合,通过优化后的SVM分类器对融合特征进行故障分类。为验证所提诊断模型的故障分类效果,基于AMESim搭建了典型飞机起落架液压系统仿真模型,构建了几种典型故障类型数据集。基于仿真数据的诊断结果表明,所提故障诊断算法精度能达到99.37%,能够有效实现起落架液压系统故障诊断;与其他智能算法对比,基于TSFFCNN-PSO-SVM故障诊断模型具有更好的平稳性与可靠性,诊断精度更高。

     

  • 图 1  基于TSFFCNN-PSO-SVM故障诊断模型结构

    Figure 1.  Structure of fault diagnosis model based on TSFFCNN-PSO-SVM

    图 2  基于TSFFCNN-PSO-SVM的故障诊断算法流程

    Figure 2.  Fault diagnosis algorithm flow based on TSFFCNN-PSO-SVM

    图 3  起落架液压系统原理图

    Figure 3.  Schematic diagram of hydraulic system of landing gear

    图 4  AMESim仿真模型

    Figure 4.  Simulation model based on AMESim

    图 5  各节点压力信号变化

    Figure 5.  Change of pressure signal at node

    图 6  样本重叠分割

    Figure 6.  Sample overlap segmentation

    图 7  数据重构

    Figure 7.  Singal resheep

    图 8  各层特征的 t-SNE 可视化分析

    Figure 8.  t-SNE visual analysis of features at various levels

    图 9  CNN-SVM故障诊断过程

    Figure 9.  CNN-SVM fault diagnosis process

    图 10  故障诊断模型的混淆矩阵

    Figure 10.  Confusion matrix of fault diagnosis model

    图 11  加噪测试集的准确度

    Figure 11.  Accuracy on the noisy test set

    图 12  不同算法的故障分类效果

    Figure 12.  Failure classification effect of different methods

    表  1  TSFCNN层参数

    Table  1.   TSFCNN layer parameters

    网络层尺寸通道数Filter大小步长
    输入层-1D1×1 0243
    卷积层11×1 024241×31
    池化层11×512241×21
    卷积层21×512481×31
    池化层21×256481×21
    Flatten层1×4 0963
    输入层-2D32×323
    卷积层132×32243×31
    池化层116×16242×21
    卷积层216×16483×31
    池化层28×8482×21
    Flatten层1×1 0243
    特征融合层1×5 1203
    全连接层1×5123
    PSO-SVM1×51
    下载: 导出CSV

    表  2  PSO算法超参数设置

    Table  2.   PSO algorithm hyperparameter settings

    $\omega $${c_1}$${c_2}$${r_1}$${r_2}$
    0.50.90.90.10.1
    下载: 导出CSV

    表  3  AMESim模型中元件含义

    Table  3.   Meaning of components in AMESim model

    编号元件备注
    1液压油箱油箱内压力:0.34 MPa
    2液压泵转速:5 000 r/min
    3液压泵泄漏孔径:<1 mm(正常),>1 mm(泄漏)
    4供油油滤等效油滤孔径:5~7 mm
    5单向阀开启压力:0.5 MPa
    6蓄能器预充压力:13 MPa,容积:2.62 L
    7油路选择阀三位四通换向阀
    8锁作动筒推杆长度:0.2 m
    9收放作动筒推杆长度=0.014 m
    10选择阀堵塞等效孔径:5~7 mm(正常),
    <4 mm(堵塞)
    11作动筒泄漏等效孔径:<1 mm(正常),
    >1 mm(泄漏)
    12溢流阀开启压力:15 MPa
    下载: 导出CSV
  • [1] 寇旭. 飞机液压系统故障特性分析及故障诊断使用技术研究[D]. 西安: 西安科技大学, 2018.

    KOU Xu. Analysis of fault characteristics of aircraft hydraulic system and research on using technology of fault diagnosis[D]. Xi’an: Xi’an University of Science and Technology, 2018. (in Chinese)
    [2] 杨超. 飞机起落架液压收放系统故障诊断方法研究[J]. 液压气动与密封,2021,41(7): 50-52, 56. doi: 10.3969/j.issn.1008-0813.2021.07.016

    YANG Chao. Research on fault diagnosis method of aircraft landing gear hydraulic retractable system[J]. Hydraulics Pneumatics and Seals,2021,41(7): 50-52, 56. (in Chinese) doi: 10.3969/j.issn.1008-0813.2021.07.016
    [3] 刘泽华,李振水. 基于小波包特征熵的飞机液压系统故障诊断方法研究[J]. 计算机测量与控制,2009,17(9): 1705-1707, 1710. doi: 10.16526/j.cnki.11-4762/tp.2009.09.045

    LIU Zehua,LI Zhenshui. Research of fault diagnosis of aircraft hydraulic system based on wavelet packet-characteristic entropy[J]. Computer Measurement & Control,2009,17(9): 1705-1707, 1710. (in Chinese) doi: 10.16526/j.cnki.11-4762/tp.2009.09.045
    [4] 李耀华, 王星州. 飞机液压系统故障诊断[J]. 计算机工程与应用, 2019, 55(5): 232-236, 264.

    LI Yaohua, WANG Xingzhou. Fault diagnosis of aircraft hydraulic system[J]. Computer Engineering and Applications, 2019, 55(5): 232-236, 264. (in Chinese)
    [5] 齐鹏,柴佳佳,靳小波. 基于CVFOA-GRNN的飞机液压系统的故障诊断研究[J]. 测控技术,2017,36(12): 43-47. doi: 10.3969/j.issn.1000-8829.2017.12.010

    QI Peng,CHAI Jiajia,JIN Xiaobo. Research on fault diagnosis of aircraft hydraulic system based on CVFOA-GRNN[J]. Measurement and Control Technology,2017,36(12): 43-47. (in Chinese) doi: 10.3969/j.issn.1000-8829.2017.12.010
    [6] 张红,程传祺,徐志刚,等. 基于深度学习的数据融合方法研究综述[J]. 计算机工程与应用,2020,56(24): 1-11. doi: 10.3778/j.issn.1002-8331.2007-0475

    ZHANG Hong,CHENG Chuanqi,XU Zhigang,et al. Research review of data fusion methods based on deep learning[J]. Computer Engineering and Applications,2020,56(24): 1-11. (in Chinese) doi: 10.3778/j.issn.1002-8331.2007-0475
    [7] YAO D,LIU H,YANG J,et al. A lightweight neural network with strong robustness for bearing fault diagnosis[J]. Measurement,2020,159: 107756. doi: 10.1016/j.measurement.2020.107756
    [8] LU Chen,WANG Zhenya,ZHOU Bo. Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification[J]. Advanced Engineering Informatics,2017,32: 139-151. doi: 10.1016/j.aei.2017.02.005
    [9] 刘星辰,周奇才,赵炯,等. 一维卷积神经网络实时抗噪故障诊断算法[J]. 哈尔滨工业大学学报,2019,51(7): 89-95.

    LIU Xingchen,ZHOU Qicai,ZHAO Jiong,et al. Real-time and anti-noise fault diagnosis algorithm based on 1-D convolutional neural network[J]. Journal of Harbin Institute of Technology,2019,51(7): 89-95. (in Chinese)
    [10] ARAM K Y, LAM S S, KHASAWNEH M T. Linear cost-sensitive max-margin embedded feature selection for SVM[J]. Expert Systems with Applications, 2022, 197: 116683.
    [11] LI Yongbo,XU Minqiang,WEI Yu,et al. A new rolling bearing fault diagnosis method based on multiscale permutation entropy and improved support vector machine based binary tree[J]. Measurement,2016,77: 80-94. doi: 10.1016/j.measurement.2015.08.034
    [12] HE Zhiyi,CHENG Junsheng,LI Juan,et al. Linear maximum margin tensor classification based on flexible convex hulls for fault diagnosis of rolling bearings[J]. Knowledge-Based Systems,2019,173: 62-73. doi: 10.1016/j.knosys.2019.02.024
    [13] HITAM N A,ISMAIL A R,SAEED F. An optimized support vector machine (SVM) based on particle swarm optimization (PSO) for cryptocurrency forecasting[J]. Procedia Computer Science,2019,163: 427-433. doi: 10.1016/j.procs.2019.12.125
    [14] 李明骏,张国银,王海瑞. 基于PSO-SVM模型的液压系统故障诊断[J]. 电视技术,2021,45(5): 115-119. doi: 10.16280/j.videoe.2021.05.032

    LI Mingjun,ZHANG Guoyin,WANG Hairui. Fault diagnosis of hydraulic system based on PSO-SVM model[J]. Television Technology,2021,45(5): 115-119. (in Chinese) doi: 10.16280/j.videoe.2021.05.032
    [15] 李创,刘宗林,刘胜,等. 快速卷积算法的综述研究[J]. 计算机工程与科学,2021,43(10): 1711-1719. doi: 10.3969/j.issn.1007-130X.2021.10.001

    LI Chuang,LIU Zonglin,LIU Sheng,et al. A review of fast convolution algorithms[J]. Computer Engineering and Science,2021,43(10): 1711-1719. (in Chinese) doi: 10.3969/j.issn.1007-130X.2021.10.001
    [16] 李巍. 基于AMESim的飞机液压系统仿真技术的应用研究[J]. 内燃机与配件,2022,43(3): 233-235. doi: 10.19475/j.cnki.issn1674-957x.2022.03.075

    LI Wei. Application research of simulation technology of aircraft hydraulic system based on AMESim[J]. Internal Combustion Engine and Parts,2022,43(3): 233-235. (in Chinese) doi: 10.19475/j.cnki.issn1674-957x.2022.03.075
    [17] 吴亚锋,郭军. 基于AMESim的飞机液压系统仿真技术的应用研究[J]. 沈阳工业大学学报,2007,29(4): 368-371.

    WU Yafeng,GUO Jun. Application research of aircraft hydraulic system simulation technology based on AMESim[J]. Journal of Shenyang University of Technology,2007,29(4): 368-371. (in Chinese)
    [18] 高文磊,陈东. 飞机起落架收放液压系统仿真与研究[J]. 液压气动与密封,2017,37(12): 64-66. doi: 10.3969/j.issn.1008-0813.2017.12.020

    GAO Wenlei,CHEN Dong. Simulation and research of aircraft landing gear retracting and extending hydraulic system[J]. Hydraulics Pneumatics and Seals,2017,37(12): 64-66. (in Chinese) doi: 10.3969/j.issn.1008-0813.2017.12.020
    [19] 李时奇. 基于卷积神经网络的飞机液压系统故障诊断算法研究[D]. 南京: 南京航空航天大学, 2020.

    LI Shiqi. Research on fault diagnosis algorithm of aircraft hydraulic system based on convolutional neural network[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020. (in Chinese)
    [20] 金江涛,许子非,李春,等. 基于深度学习与混沌特征融合的滚动轴承故障诊断[J]. 控制理论与应用,2022,39(1): 109-116. doi: 10.7641/CTA.2021.10177

    JIN Jiangtao,XU Zifei,LI Chun,et al. Fault diagnosis of rolling bearing based on fusion of deep learning and chaotic features[J]. Control Theory and Application,2022,39(1): 109-116. (in Chinese) doi: 10.7641/CTA.2021.10177
    [21] 赵春华,胡恒星,陈保家,等. 基于深度学习特征提取和WOA-SVM状态识别的轴承故障诊断[J]. 振动与冲击,2019,38(10): 31-37, 48. doi: 10.13465/j.cnki.jvs.2019.10.005

    ZHAO Chunhua,HU Hengxing,CHEN Baojia,et al. Bearing fault diagnosis based on deep learning feature extraction and WOA-SVM state recognition[J]. Vibration and Shock,2019,38(10): 31-37, 48. (in Chinese) doi: 10.13465/j.cnki.jvs.2019.10.005
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  146
  • HTML浏览量:  58
  • PDF量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-04
  • 网络出版日期:  2023-03-21

目录

    /

    返回文章
    返回