Fault diagnosis of aircraft landing gear hydraulic system based on TSFFCNN-PSO-SVM
-
摘要:
针对飞机起落架液压系统故障诊断精度低,深层故障特征提取困难的问题,提出了一种基于双路特征融合卷积神经网络(TSFFCNN)与粒子群优化支持向量机(PSO-SVM)结合的起落架液压系统故障诊断模型。该诊断模型以起落架多节点压力信号作为输入,采用一维卷积神经网络(1DCNN)与二维卷积神经网络(2DCNN)并行多通道网络结构自适应提取深层特征信息,并在融合层将深层特征信息融合,通过优化后的SVM分类器对融合特征进行故障分类。为验证所提诊断模型的故障分类效果,基于AMESim搭建了典型飞机起落架液压系统仿真模型,构建了几种典型故障类型数据集。基于仿真数据的诊断结果表明,所提故障诊断算法精度能达到99.37%,能够有效实现起落架液压系统故障诊断;与其他智能算法对比,基于TSFFCNN-PSO-SVM故障诊断模型具有更好的平稳性与可靠性,诊断精度更高。
-
关键词:
- 飞机起落架液压系统 /
- 特征融合 /
- 故障诊断 /
- 双路特征融合卷积神经网络(TSFFCNN) /
- 粒子群优化支持向量机(PSO-SVM)
Abstract:In view of the problems of low fault diagnosis accuracy of aircraft landing gear hydraulic system and difficulty in extracting deep fault features, a fault diagnosis model of landing gear hydraulic system based on the combination of two-stream feature fusion convolutional neural network (TSFFCNN) and particle swarm optimization support vector machine (PSO-SVM) was proposed. The diagnosis model took the pressure signal of multiple nodes as input, the 1D convolutional neural network (1DCNN) and 2D convolutional neural network (2DCNN) parallel multi-channel network structures were adopted to adaptively extract deep feature information, and the deep feature information was fused in the fusion layer. The fusion features were classified into faults through the optimized SVM classifier. In order to verify the proposed fault diagnosis model, a typical aircraft landing gear hydraulic system simulation model was built based on AMESim, and several typical fault type data sets were constructed. The diagnostic results based on the simulation data showed that the accuracy of the proposed fault diagnosis algorithm can reach 99.37%, which can effectively realize the fault diagnosis of the landing gear hydraulic system; compared with other intelligent algorithms, the fault diagnosis model based on TSFFCNN and PSO-SVM had better stability and reliability, higher diagnosis accuracy.
-
表 1 TSFCNN层参数
Table 1. TSFCNN layer parameters
网络层 尺寸 通道数 Filter大小 步长 输入层-1D 1×1 024 3 卷积层1 1×1 024 24 1×3 1 池化层1 1×512 24 1×2 1 卷积层2 1×512 48 1×3 1 池化层2 1×256 48 1×2 1 Flatten层 1×4 096 3 输入层-2D 32×32 3 卷积层1 32×32 24 3×3 1 池化层1 16×16 24 2×2 1 卷积层2 16×16 48 3×3 1 池化层2 8×8 48 2×2 1 Flatten层 1×1 024 3 特征融合层 1×5 120 3 全连接层 1×512 3 PSO-SVM 1×5 1 表 2 PSO算法超参数设置
Table 2. PSO algorithm hyperparameter settings
$\omega $ ${c_1}$ ${c_2}$ ${r_1}$ ${r_2}$ 0.5 0.9 0.9 0.1 0.1 表 3 AMESim模型中元件含义
Table 3. Meaning of components in AMESim model
编号 元件 备注 1 液压油箱 油箱内压力:0.34 MPa 2 液压泵 转速:5 000 r/min 3 液压泵泄漏 孔径:<1 mm(正常),>1 mm(泄漏) 4 供油油滤 等效油滤孔径:5~7 mm 5 单向阀 开启压力:0.5 MPa 6 蓄能器 预充压力:13 MPa,容积:2.62 L 7 油路选择阀 三位四通换向阀 8 锁作动筒 推杆长度:0.2 m 9 收放作动筒 推杆长度=0.014 m 10 选择阀堵塞 等效孔径:5~7 mm(正常),
<4 mm(堵塞)11 作动筒泄漏 等效孔径:<1 mm(正常),
>1 mm(泄漏)12 溢流阀 开启压力:15 MPa -
[1] 寇旭. 飞机液压系统故障特性分析及故障诊断使用技术研究[D]. 西安: 西安科技大学, 2018.KOU Xu. Analysis of fault characteristics of aircraft hydraulic system and research on using technology of fault diagnosis[D]. Xi’an: Xi’an University of Science and Technology, 2018. (in Chinese) [2] 杨超. 飞机起落架液压收放系统故障诊断方法研究[J]. 液压气动与密封,2021,41(7): 50-52, 56. doi: 10.3969/j.issn.1008-0813.2021.07.016YANG Chao. Research on fault diagnosis method of aircraft landing gear hydraulic retractable system[J]. Hydraulics Pneumatics and Seals,2021,41(7): 50-52, 56. (in Chinese) doi: 10.3969/j.issn.1008-0813.2021.07.016 [3] 刘泽华,李振水. 基于小波包特征熵的飞机液压系统故障诊断方法研究[J]. 计算机测量与控制,2009,17(9): 1705-1707, 1710. doi: 10.16526/j.cnki.11-4762/tp.2009.09.045LIU Zehua,LI Zhenshui. Research of fault diagnosis of aircraft hydraulic system based on wavelet packet-characteristic entropy[J]. Computer Measurement & Control,2009,17(9): 1705-1707, 1710. (in Chinese) doi: 10.16526/j.cnki.11-4762/tp.2009.09.045 [4] 李耀华, 王星州. 飞机液压系统故障诊断[J]. 计算机工程与应用, 2019, 55(5): 232-236, 264.LI Yaohua, WANG Xingzhou. Fault diagnosis of aircraft hydraulic system[J]. Computer Engineering and Applications, 2019, 55(5): 232-236, 264. (in Chinese) [5] 齐鹏,柴佳佳,靳小波. 基于CVFOA-GRNN的飞机液压系统的故障诊断研究[J]. 测控技术,2017,36(12): 43-47. doi: 10.3969/j.issn.1000-8829.2017.12.010QI Peng,CHAI Jiajia,JIN Xiaobo. Research on fault diagnosis of aircraft hydraulic system based on CVFOA-GRNN[J]. Measurement and Control Technology,2017,36(12): 43-47. (in Chinese) doi: 10.3969/j.issn.1000-8829.2017.12.010 [6] 张红,程传祺,徐志刚,等. 基于深度学习的数据融合方法研究综述[J]. 计算机工程与应用,2020,56(24): 1-11. doi: 10.3778/j.issn.1002-8331.2007-0475ZHANG Hong,CHENG Chuanqi,XU Zhigang,et al. Research review of data fusion methods based on deep learning[J]. Computer Engineering and Applications,2020,56(24): 1-11. (in Chinese) doi: 10.3778/j.issn.1002-8331.2007-0475 [7] YAO D,LIU H,YANG J,et al. A lightweight neural network with strong robustness for bearing fault diagnosis[J]. Measurement,2020,159: 107756. doi: 10.1016/j.measurement.2020.107756 [8] LU Chen,WANG Zhenya,ZHOU Bo. Intelligent fault diagnosis of rolling bearing using hierarchical convolutional network based health state classification[J]. Advanced Engineering Informatics,2017,32: 139-151. doi: 10.1016/j.aei.2017.02.005 [9] 刘星辰,周奇才,赵炯,等. 一维卷积神经网络实时抗噪故障诊断算法[J]. 哈尔滨工业大学学报,2019,51(7): 89-95.LIU Xingchen,ZHOU Qicai,ZHAO Jiong,et al. Real-time and anti-noise fault diagnosis algorithm based on 1-D convolutional neural network[J]. Journal of Harbin Institute of Technology,2019,51(7): 89-95. (in Chinese) [10] ARAM K Y, LAM S S, KHASAWNEH M T. Linear cost-sensitive max-margin embedded feature selection for SVM[J]. Expert Systems with Applications, 2022, 197: 116683. [11] LI Yongbo,XU Minqiang,WEI Yu,et al. A new rolling bearing fault diagnosis method based on multiscale permutation entropy and improved support vector machine based binary tree[J]. Measurement,2016,77: 80-94. doi: 10.1016/j.measurement.2015.08.034 [12] HE Zhiyi,CHENG Junsheng,LI Juan,et al. Linear maximum margin tensor classification based on flexible convex hulls for fault diagnosis of rolling bearings[J]. Knowledge-Based Systems,2019,173: 62-73. doi: 10.1016/j.knosys.2019.02.024 [13] HITAM N A,ISMAIL A R,SAEED F. An optimized support vector machine (SVM) based on particle swarm optimization (PSO) for cryptocurrency forecasting[J]. Procedia Computer Science,2019,163: 427-433. doi: 10.1016/j.procs.2019.12.125 [14] 李明骏,张国银,王海瑞. 基于PSO-SVM模型的液压系统故障诊断[J]. 电视技术,2021,45(5): 115-119. doi: 10.16280/j.videoe.2021.05.032LI Mingjun,ZHANG Guoyin,WANG Hairui. Fault diagnosis of hydraulic system based on PSO-SVM model[J]. Television Technology,2021,45(5): 115-119. (in Chinese) doi: 10.16280/j.videoe.2021.05.032 [15] 李创,刘宗林,刘胜,等. 快速卷积算法的综述研究[J]. 计算机工程与科学,2021,43(10): 1711-1719. doi: 10.3969/j.issn.1007-130X.2021.10.001LI Chuang,LIU Zonglin,LIU Sheng,et al. A review of fast convolution algorithms[J]. Computer Engineering and Science,2021,43(10): 1711-1719. (in Chinese) doi: 10.3969/j.issn.1007-130X.2021.10.001 [16] 李巍. 基于AMESim的飞机液压系统仿真技术的应用研究[J]. 内燃机与配件,2022,43(3): 233-235. doi: 10.19475/j.cnki.issn1674-957x.2022.03.075LI Wei. Application research of simulation technology of aircraft hydraulic system based on AMESim[J]. Internal Combustion Engine and Parts,2022,43(3): 233-235. (in Chinese) doi: 10.19475/j.cnki.issn1674-957x.2022.03.075 [17] 吴亚锋,郭军. 基于AMESim的飞机液压系统仿真技术的应用研究[J]. 沈阳工业大学学报,2007,29(4): 368-371.WU Yafeng,GUO Jun. Application research of aircraft hydraulic system simulation technology based on AMESim[J]. Journal of Shenyang University of Technology,2007,29(4): 368-371. (in Chinese) [18] 高文磊,陈东. 飞机起落架收放液压系统仿真与研究[J]. 液压气动与密封,2017,37(12): 64-66. doi: 10.3969/j.issn.1008-0813.2017.12.020GAO Wenlei,CHEN Dong. Simulation and research of aircraft landing gear retracting and extending hydraulic system[J]. Hydraulics Pneumatics and Seals,2017,37(12): 64-66. (in Chinese) doi: 10.3969/j.issn.1008-0813.2017.12.020 [19] 李时奇. 基于卷积神经网络的飞机液压系统故障诊断算法研究[D]. 南京: 南京航空航天大学, 2020.LI Shiqi. Research on fault diagnosis algorithm of aircraft hydraulic system based on convolutional neural network[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020. (in Chinese) [20] 金江涛,许子非,李春,等. 基于深度学习与混沌特征融合的滚动轴承故障诊断[J]. 控制理论与应用,2022,39(1): 109-116. doi: 10.7641/CTA.2021.10177JIN Jiangtao,XU Zifei,LI Chun,et al. Fault diagnosis of rolling bearing based on fusion of deep learning and chaotic features[J]. Control Theory and Application,2022,39(1): 109-116. (in Chinese) doi: 10.7641/CTA.2021.10177 [21] 赵春华,胡恒星,陈保家,等. 基于深度学习特征提取和WOA-SVM状态识别的轴承故障诊断[J]. 振动与冲击,2019,38(10): 31-37, 48. doi: 10.13465/j.cnki.jvs.2019.10.005ZHAO Chunhua,HU Hengxing,CHEN Baojia,et al. Bearing fault diagnosis based on deep learning feature extraction and WOA-SVM state recognition[J]. Vibration and Shock,2019,38(10): 31-37, 48. (in Chinese) doi: 10.13465/j.cnki.jvs.2019.10.005 -