留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

端封开口角度对挤压油膜阻尼器影响试验

陈亚龙 马会防 黄延忠 张广辉

陈亚龙, 马会防, 黄延忠, 等. 端封开口角度对挤压油膜阻尼器影响试验[J]. 航空动力学报, 2023, 38(11):2629-2638 doi: 10.13224/j.cnki.jasp.20220117
引用本文: 陈亚龙, 马会防, 黄延忠, 等. 端封开口角度对挤压油膜阻尼器影响试验[J]. 航空动力学报, 2023, 38(11):2629-2638 doi: 10.13224/j.cnki.jasp.20220117
CHEN Yalong, MA Huifang, HUANG Yanzhong, et al. Experiment on the effect of piston ring gap angle on the performance of squeeze film damper[J]. Journal of Aerospace Power, 2023, 38(11):2629-2638 doi: 10.13224/j.cnki.jasp.20220117
Citation: CHEN Yalong, MA Huifang, HUANG Yanzhong, et al. Experiment on the effect of piston ring gap angle on the performance of squeeze film damper[J]. Journal of Aerospace Power, 2023, 38(11):2629-2638 doi: 10.13224/j.cnki.jasp.20220117

端封开口角度对挤压油膜阻尼器影响试验

doi: 10.13224/j.cnki.jasp.20220117
详细信息
    作者简介:

    陈亚龙(1985−),男,正高级工程师,硕士,从事航空发动机强度设计与试验工作

  • 中图分类号: V216.2+1;TK14

Experiment on the effect of piston ring gap angle on the performance of squeeze film damper

  • 摘要:

    采用正交激振测试方法,研究了不同供油孔数、不同供油压力与活塞环开口角度对泄漏量的影响,试验识别了挤压油膜阻尼器(SFD)系统的阻尼系数。结果表明:1孔供油且活塞环开口与供油孔重合时泄漏量最大;供油孔数、供油压力与活塞环开口角度共同影响下,低供油压力、1孔供油活塞环开口角度0°时主阻尼系数$ { C_{xx }} $${ C_{yy} } $差异最小;活塞环开口角度0°且最下方的1孔供油时,SFD系统的阻尼性能最好,平均主阻尼系数能达到9.04×104 N·s/m,约为理论短轴承解最大值的5.7倍,建议安装时两个活塞环开口角度为0°以保证具有较好的密封性,提升SFD工作时的减振性能。

     

  • 图 1  SFD动力学系数识别试验装置

    Figure 1.  Dynamic coefficient identification test rig for SFD

    图 2  SFD试验台照片

    Figure 2.  Photo of test rig for SFD

    图 3  滑油在活塞环搭扣处泄漏示意图

    Figure 3.  Schematic of oil leakage at the agraffe of piston ring

    图 4  SFD活塞环端封结构(径向视图)

    Figure 4.  Piston ring end seal structure of SFD (radial view)

    图 5  SFD活塞环端封结构照片

    Figure 5.  Photo of piston ring end seal structure of SFD

    图 6  供油孔、激振力和位移的相对位置

    Figure 6.  Relative position of oil supply hole, shocking force and displacement

    图 7  SFD试验时活塞环开口角度与供油孔相对位置

    Figure 7.  Relative position between the piston ring gap angle and oil supply hole during SFD experiment

    图 8  SFD动力学系数识别示意图

    Figure 8.  Schematic of dynamic coefficient identification for SFD

    图 9  不同活塞环开口角度下频域识别结果

    Figure 9.  Frequency domain identification result of different piston ring gap angles

    图 10  1孔供油时SFD静态与动态泄漏量分析

    Figure 10.  Analysis of static and dynamic leakage of SFD with single oil supply hole

    图 11  3孔供油时SFD静态与动态泄漏量分析

    Figure 11.  Analysis of static and dynamic leakage of SFD with three oil supply holes

    图 12  6孔供油时SFD静态与动态泄漏量分析

    Figure 12.  Analysis of static and dynamic leakage of SFD with six oil supply holes

    图 13  1孔供油时SFD主阻尼系数分析

    Figure 13.  Analysis of SFD principal damping coefficients with single oil supply hole

    图 14  3孔供油时SFD主阻尼系数分析

    Figure 14.  Analysis of SFD principal damping coefficients with three oil supply holes

    图 15  6孔供油时SFD主阻尼系数分析

    Figure 15.  Analysis of SFD principal damping coefficients with six oil supply holes

    图 16  SFD平均主阻尼系数影响

    Figure 16.  Influence of SFD average principal damping coefficient

    表  1  详细试验条件

    Table  1.   Detailed experiment conditions

    参数数值及说明
    等效直径/mm235.2
    油膜半径间隙c/mm0.2$ \pm 0.05 $
    有效油膜长度L/mm25
    滑油牌号15号航空润滑油(地面用)
    滑油动力黏度μ /(mPa·s)3.57(21℃)
    内测活塞环开口角度/(°)0
    外测活塞环开口角度/(°)0, 90, 180, 270
    激振力幅值/N270~370
    激振力频率/Hz52
    供油压力/MPa0.05, 0.1, 0.3, 0.4
    供油孔直径/mm2
    供油孔数1孔—4#供油孔
    3孔—2#、4#、6#供油孔
    6孔—1#~6#供油孔
    下载: 导出CSV
  • [1] JOHANNESSON H L. Oil leakage and friction forces of reciprocating O-ring seals considering cavitation[J]. Journal of Lubrication Technology,1983,105(2): 288-296. doi: 10.1115/1.3254595
    [2] DRAGONI E,STROZZI A. Analysis of an unpressurized, laterally restrained, elastomeric O-ring seal[J]. Journal of Tribology,1988,110(2): 193-200. doi: 10.1115/1.3261583
    [3] JUNG S Y,SAN ANDRES L A,VANCE J M. Measurements of pressure distributions and force coefficients in a squeeze film damper: Part Ⅱ partially sealed configuration[J]. Tribology Transactions,2008,34(3): 383-388.
    [4] JUNG S Y,SAN ANDRES L A,VANCE J M. Measurements of pressure distributions and force coefficients in a squeeze film damper: Part Ⅰ fully open ended configuration[J]. Tribology Transactions,2008,34(3): 375-382.
    [5] CHEN P,HAHN E J. Side clearance effects on squeeze film damper performance[J]. Tribology International,2000,33(3/4): 161-165.
    [6] KIM K J,LEE C W. Dynamic characteristics of sealed squeeze film damper with a central feeding groove[J]. Journal of Tribology,2005,127(1): 103-111. doi: 10.1115/1.1828075
    [7] XING Changhu, BRAUN M J, LI Hongmin. Sealing effect on the performance of squeeze film damper[C]//ASME Turbo Expo: Power for Land, Sea, & Air. Orlando, USA: AMSE, 2009: 1325-1334.
    [8] DELGADO A,ANDRES L S. A model for improved prediction of force coefficients in grooved squeeze film dampers and oil seal rings[J]. Journal of Tribology,2010,132(3): 032202.1-032202.12.
    [9] SAN ANDRÉS L,SANJEEV S. Damping and inertia coefficients for two end sealed squeeze film dampers with a central groove: measurements and predictions[J]. Journal of Engineering for Gas Turbines and Power,2013,135(11): 112503.1-112503.9.
    [10] LUIS S A,KOO B,JEUNG S H. Experimental force coefficients for two sealed ends squeeze film dampers (piston rings and O-rings): an assessment of their similarities and differences[J]. Journal of Engineering for Gas Turbines and Power,2019,141(2): 021024.1-021024.13.
    [11] DOUSTI S, DIMOND T W, ALLAIRE P E, et al. Time transient analysis of horizontal rigid rotor supported with O-ring sealed squeeze film damper[R]. ASME Paper IMECE2013-63907, 2013.
    [12] JEUNG S H,SAN ANDRÉS L S,DEN S,et al. Effect of oil supply pressure on the force coefficients of a squeeze film damper sealed with piston rings[J]. Journal of Tribology,2019,141(6): 61701. doi: 10.1115/1.4043238
    [13] LU X L,SAN ANDRÉS L,WU T C. Leakage and force coefficients of a grooved wet (bubbly liquid) seal for multiphase pumps and comparisons with prior test results for a three wave seal[J]. Journal of Engineering for Gas Turbines and Power,2020,142(1): 011011. doi: 10.1115/1.4044682
    [14] FAN Tieshu,BEHDINAN K. Investigation into the effect of piston ring seals on an integrated squeeze film damper model[J]. Journal of Mechanical Science and Technology,2019,33(2): 559-569. doi: 10.1007/s12206-019-0109-4
    [15] LU Xueliang, ANDRÉS L S, KOO B, et al. On the effect of the gap of end seals on force coefficients of a test integral squeeze film damper: experiments and predictions[J] Journal of Engineering for Gas Turbines and Power, 2021, 143(1): 011014.
    [16] ATULKAR A,PANDEY R K,SUBBARAO P M V. Performance analysis of two-dimensional section of partially textured piston ring with cavitation boundary conditions[J]. Surface Topography-Metrology and Properties,2021,9(2): 025025.1-025025.17.
    [17] ANDRES S L,RODRÍGUEZ B. On the experimental dynamic force performance of a squeeze film damper supplied through a check valve and sealed with O-rings[J]. Journal of Engineering for Gas Turbines and Power,2021,143(11): 111011. doi: 10.1115/1.4051964
    [18] TAKEUCHI R,ISHIMARU H,YAMASHITA H,et al. Experimental evaluation of dynamic characteristics of circular arc spring dampers for rotating machinery[J]. Journal of Engineering for Gas Turbines and Power,2021,143(6): 061008. doi: 10.1115/1.4049164
    [19] 《航空发动机设计手册》总编委会. 航空发动机设计手册: 第19册 转子动力学及整机振动[M]. 北京: 航空工业出版社, 2000: 236-237.
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  80
  • HTML浏览量:  24
  • PDF量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-07
  • 网络出版日期:  2023-04-11

目录

    /

    返回文章
    返回