留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

螺桨发动机分段调度双变量组合控制

王曦

王曦. 螺桨发动机分段调度双变量组合控制[J]. 航空动力学报, 2022, 37(10):2261-2271 doi: 10.13224/j.cnki.jasp.20220118
引用本文: 王曦. 螺桨发动机分段调度双变量组合控制[J]. 航空动力学报, 2022, 37(10):2261-2271 doi: 10.13224/j.cnki.jasp.20220118
WANG Xi. Two variable combination control of propeller engine piecewise scheduling[J]. Journal of Aerospace Power, 2022, 37(10):2261-2271 doi: 10.13224/j.cnki.jasp.20220118
Citation: WANG Xi. Two variable combination control of propeller engine piecewise scheduling[J]. Journal of Aerospace Power, 2022, 37(10):2261-2271 doi: 10.13224/j.cnki.jasp.20220118

螺桨发动机分段调度双变量组合控制

doi: 10.13224/j.cnki.jasp.20220118
基金项目: 国家科技重大专项(2017-Ⅴ-0015-0067)
详细信息
    作者简介:

    王曦(1961-),男,教授、博士生导师,博士,主要从事航空发动机控制研究

  • 中图分类号: V233.7

Two variable combination control of propeller engine piecewise scheduling

  • 摘要:

    从涡桨发动机的工作原理、特点和全权限数字发动机和螺旋桨控制(FADEPC)设计要求出发,分析了等涡轮前总温调节、等转速调节、等螺旋桨功率调节的单变量调节方法以及通过调节燃油流量保持涡轮前总温不变或保持螺旋桨功率不变、通过调节桨叶安装角保持转速不变的双变量调节方法。在此基础上,根据涡桨发动机工作特点,并从控制的可实现性角度考虑,提出了一种螺桨发动机在全飞行包线范围内按等螺旋桨功率、等转速和等涡轮后总温调节、按功率限制设计高度切换的开环+闭环结构式分段调度双变量组合控制的方法。在3种不同的飞行速度条件下,仿真验证了所述控制方法的可行性,转速最大相对误差不超过0.1%。

     

  • 图 1  飞行高度和马赫数不变条件下,涡桨发动机总功率随发动机转速变化的安全工作

    Figure 1.  Safe working envelope of turboprop engine total power varying with engine speed at constant flight altitude and Mach number

    图 2  涡轮前总温按功率杆变化的调节策略

    Figure 2.  Adjustment strategy of turbine front total temperature according to power lever change

    图 3  保持最大转速不变的调节策略

    Figure 3.  Adjustment strategy of keeping the maximum speed unchanged

    图 4  转速按功率杆分段变化的调节策略

    Figure 4.  Adjustment strategy of rotating speed according to subsection change of power lever

    图 5  螺桨发动机的速度特性(飞行高度、转速、涡轮前总温不变)

    Figure 5.  Speed characteristics of propeller engine (flight altitude, rotating speed and total temperature in front of turbine remain unchanged)

    图 6  螺桨发动机的高度特性(飞行速度、转速、涡轮前总温不变)

    Figure 6.  Altitude characteristics of propeller engine (flight speed, rotating speed and total temperature in front of turbine remain unchanged)

    图 7  螺桨发动机的高度特性(飞行速度、转速、螺旋桨功率不变)

    Figure 7.  Altitude characteristics of propeller engine (flight speed, rotating speed and propeller power remain unchanged)

    图 8  螺桨发动机开环+闭环结构式分段调度双变量组合调节原理方块图

    Figure 8.  Schematic block diagram of two variable combined regulation of propeller engine with open-loop + closed-loop structured sectional dispatching

    图 9  螺旋桨功率与飞行条件、功率杆角度的对应关系

    Figure 9.  Corresponding relationship between propeller power and flight conditions and power level angle

    图 10  飞行高度轨迹

    Figure 10.  Flight altitude trajectory

    图 11  三种飞行速度条件下转速响应曲线

    Figure 11.  Speed response curves under three flight speeds

    图 12  三种飞行速度条件下总功率响应曲线

    Figure 12.  Total power response curves under three flight speeds

    图 13  三种飞行速度条件下涡轮前总温响应曲线

    Figure 13.  Response curves of front total temperature of turbine under three flight speeds

    图 14  三种飞行速度条件下燃油流量调节曲线

    Figure 14.  Fuel flow regulation curves under three flight speeds

    图 15  三种飞行速度条件下桨叶安装角调节曲线

    Figure 15.  Adjustment curves of blade installation angle under three flight speeds

  • [1] 吴涛. 欧罗巴之鹰A400M大型运输机全解析[J]. 现代兵器,2008(10): 19-30.

    WU Tao. Full analysis of europa eagle A400M large transport aircraft[J]. Modern Armament,2008(10): 19-30. (in Chinese)
    [2] 黄维娜,李中祥. 国外航空发动机简明手册[M]. 西安:西北工业大学出版社,2014.
    [3] 沈亮,欧平阳. 捕食者系列无人机特点及发展经验[J]. 飞航导弹,2012(12): 33-36.

    SHEN Liang,OU Pingyang. Characteristics and development experience of predator series UAV[J]. Aeronautical Missile,2012(12): 33-36. (in Chinese)
    [4] 周辉华. 国外涡桨发动机的发展[J]. 航空科学技术,2013,24(1): 18-22.

    ZHOU Huihua. The development prospect of turbo-propeller engines[J]. Aeronautical Science and Technology,2013,24(1): 18-22. (in Chinese)
    [5] 时瑞军. 涡桨发动机控制技术演变及趋势[J]. 航空动力,2019(4): 39-42.

    SHI Ruijun. The development of turboprop control technology and trend[J]. Aerospace Power,2019(4): 39-42. (in Chinese)
    [6] 陈怀荣,王曦. 国外涡桨发动机控制技术的发展[J]. 航空发动机,2016,42(6): 9-17.

    CHEN Huairong,WANG Xi. Development of turboprop engine control technology in the west[J]. Aeroengine,2016,42(6): 9-17. (in Chinese)
    [7] 陈怀荣,王曦. 基于部件特性的螺旋桨数学模型通用建模算法[J]. 推进技术,2019,40(8): 1681-1692. doi: 10.13675/j.cnki.tjjs.180511

    CHEN Huairong,WANG Xi. General modeling algorithm for propeller mathematical model based on component characteristics[J]. Journal of Propulsion Technology,2019,40(8): 1681-1692. (in Chinese) doi: 10.13675/j.cnki.tjjs.180511
    [8] 陈怀荣,王曦. 一种基于螺旋桨部件特性的螺旋桨建模方法[J]. 航空动力学报,2017,32(10): 2526-2535. doi: 10.13224/j.cnki.jasp.2017.10.027

    CHEN Huairong,WANG Xi. A modeling method of propeller based on the propeller component characteristic[J]. Journal of Aerospace Power,2017,32(10): 2526-2535. (in Chinese) doi: 10.13224/j.cnki.jasp.2017.10.027
    [9] CHEN Huairong,WANG Xi. Design of control laws based on inverted decoupling and linear matrix inequality for a turboprop engine[J]. Journal of Engineering for Gas Turbines and Power,2020,142(2): 1-9.
    [10] CHEN Huairong,WANG Xi. Inverted decoupling and LMI-based controller design for a turboprop engine with actuator dynamics[J]. Chinese Journal of Aeronautics,2020,33(6): 1774-1787. doi: 10.1016/j.cja.2020.01.012
    [11] SILVA V T. A propeller model for steady-state and transient performance prediction of turboprop and counter-rotating open rotor engines[J]. Journal of Engineering for Gas Turbinesand Power,2018,140(7): 1-13.
    [12] KONG C,KI J. Performance simulation of turboprop[R]. ASME Paper 2001-GT-0391,2001.
    [13] KONG C,ROH H. Performance simulation of turboprop engine using SIMULINK® model [R]. ASME Paper GT-2002-30516,2002.
    [14] KONG C,ROH H. Steady-state and transient simulation of turboprop engine using SIMULINK model[R]. ASME Paper GT 2003-38181,2003.
    [15] KONG C,ROH H. Steady-state performance simulation of PT6A-62 turboprop engine using SIMULINK[J]. International Journal of Turbo and Jet Engines,2003,20(2): 183-194.
    [16] KECK M F,SCHWENTG V,FREDLAKE J J,et al. A turboprop engine advanced adaptive fuel control with a high contamination tolerance[R]. ASME Paper 68-GT-45,1968.
    [17] STEWART D J. CT7-5A/7/7E turboprop engine for commuter airline service[R]. ASME Paper 84-GT-257,1984.
    [18] BADGER M,JULIEN A,LEBLANC A D,et al. The PT6 engine: 30 years of gas turbine technology evolution[J]. Journal of Engineering for Gas Turbine and Power,1994,116(2): 322-330. doi: 10.1115/1.2906823
    [19] 廉小纯,吴虎. 航空燃气轮机原理[M]. 北京:国防工业出版社,2001.
    [20] 唐狄毅, 廉小纯.航空燃气轮机原理[M]. 北京:国防工业出版社,1990.
  • 加载中
图(15)
计量
  • 文章访问数:  107
  • HTML浏览量:  35
  • PDF量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-07
  • 网络出版日期:  2022-09-15

目录

    /

    返回文章
    返回