留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高空台进排气模拟仿真系统设计与应用

裴希同 张楼悦 王曦 刘佳帅 钱秋朦 朱美印

裴希同, 张楼悦, 王曦, 等. 高空台进排气模拟仿真系统设计与应用[J]. 航空动力学报, 2022, 37(10):2074-2089 doi: 10.13224/j.cnki.jasp.20220122
引用本文: 裴希同, 张楼悦, 王曦, 等. 高空台进排气模拟仿真系统设计与应用[J]. 航空动力学报, 2022, 37(10):2074-2089 doi: 10.13224/j.cnki.jasp.20220122
PEI Xitong, ZHANG Louyue, WANG Xi, et al. Design and application of intake and exhaust simulation system for altitude ground test facilities[J]. Journal of Aerospace Power, 2022, 37(10):2074-2089 doi: 10.13224/j.cnki.jasp.20220122
Citation: PEI Xitong, ZHANG Louyue, WANG Xi, et al. Design and application of intake and exhaust simulation system for altitude ground test facilities[J]. Journal of Aerospace Power, 2022, 37(10):2074-2089 doi: 10.13224/j.cnki.jasp.20220122

高空台进排气模拟仿真系统设计与应用

doi: 10.13224/j.cnki.jasp.20220122
基金项目: 国家科技重大专项(J2019-Ⅴ-0010-0104);稳定支持专项(GJCZ-0011-19)
详细信息
    作者简介:

    裴希同(1987-),男,高级工程师,博士生,主要从事航空发动机控制及航空发动机高空模拟试验技术研究

    通讯作者:

    张楼悦(1997-),男,硕士生,主要从事航空发动机控制及航空发动机高空模拟试验技术研究。E-mail:SY2004112@buaa.edu.cn

  • 中图分类号: V216.7

Design and application of intake and exhaust simulation system for altitude ground test facilities

  • 摘要:

    基于国内某高空台进排气系统的结构与试验特性开展了相关设备的动态特性建模、仿真系统设计以及应用研究。针对管道、调节阀、节流部件、液压控制系统和模拟发动机流量的拉瓦尔喷管等关键试验设备进行了数学建模,得到了相应的模型库;根据高空台进排气结构设计了全数字仿真系统和半物理仿真系统,并通过与实际试验数据的对比证明了仿真系统的有效性。根据仿真验证结果以及仿真系统应用分析可以得出:利用仿真系统计算的发动机进气温度和压力与试验数据相比动态变化趋势一致,温度的最大相对误差不大于0.5%,压力的最大相对误差不大于3%;基于高空台试验设备模型和仿真系统开发的控制方法使得压力调节时间缩短为原来的1/3,有效提升了过渡态调节性能。

     

  • 图 1  高空台空气管路系统原理图

    Figure 1.  Air piping system schematic diagram of the altitude ground test facilities

    图 2  高空台进排气管路系统结构简图

    Figure 2.  Intake and exhaust piping system structure sketch of the altitude ground test facilities

    图 3  冷热流掺混示意图

    Figure 3.  Hot and cold flow blending diagram

    图 4  管道分层建模示意图

    Figure 4.  Diagram of pipeline layered modeling

    图 5  调节阀及等效孔板流动示意图

    Figure 5.  Flow diagrams of regulating valves and equivalent orifice plate

    图 6  进排气调节阀结构图

    Figure 6.  Structure diagrams of intake and exhaust regulating valves

    图 7  调节阀不同开度下流场仿真结果

    Figure 7.  Flow-field simulation results of regulating valves at different opening degrees

    图 8  基于神经网络拟合方法流程图

    Figure 8.  Flow chart of the neural network based fitting method

    图 9  调节阀流量系数曲面图

    Figure 9.  Surface diagrams of regulating valves flow coefficient

    图 10  等效的进排气系统图

    Figure 10.  Equivalent diagram of the intake and exhaust system

    图 11  管道容腔子模型

    Figure 11.  Piping cavity sub-model

    图 12  液压控制系统驱动调节阀模型

    Figure 12.  Hydraulic control system based regulating valve drive model

    图 13  高空台进排气仿真原理框图

    Figure 13.  Block diagram of the altitude ground test facilities intake and exhaust simulation system

    图 14  全数字仿真系统进气温度和压力仿真值与试验数据对比

    Figure 14.  Comparisons of simulated values and test data on intake temperature and pressure

    图 15  高空台进排气半物理仿真系统

    Figure 15.  Intake and exhaust semi-physical simulation system of the altitude ground test facilities

    图 16  全数字仿真系统与半物理仿真系统对比

    Figure 16.  Comparisons of digital simulation system and semi-physical simulation system

    图 17  半物理仿真系统进气温度和压力仿真值与试验数据对比

    Figure 17.  Comparisons of simulated values and test data on intake temperature and pressure of semi-physical simulation system

    图 18  采用高原起动控制方法前后进排气压力控制效果对比

    Figure 18.  Comparisons of intake and exhaust pressure control effect before and after adopting the control method of engine starting in plateau environment

    图 19  两种控制方法对进气压力控制的效果对比

    Figure 19.  Comparison of intake pressure control results by two control methods

    图 20  基于扩张状态观测器的高空台进气压力控制效果

    Figure 20.  Intake pressure control effect of the altitude ground test facilities based on expansion state observer

  • [1] MONTGOMERY P A,BURDETTE R. Evolution of a turbine engine test facility to meet the test needs of future aircraft systems[R]. Amsterdam,Netherlands: ASME Turbo Expo,2002.
    [2] SCHMIDT K J,MERTEN R,MENRATH M,et al. Adaption of the Stuttgart University altitude test facility for BR700 core demonstrator engine tests[R]. ASME Paper 98-GT-556,1998.
    [3] BRAIG W. Transient aeroengine testing at Stuttgart altitude test facility[R]. International Society for Air Breathing Engines,ISABE 99-7074,1999.
    [4] DAVIS M,MONTGOMERY P. A flight simulation vision for aero propulsion altitude ground test facilities[J]. Transactions of the ASME,2002,127(4): 21-31.
    [5] GARRARD D,VAUGHN D,MILHOAN A. Checkout testing of the new basic process control system at the aerodynamic and propulsion test unit[R]. AIAA-2012-5969,2012.
    [6] SHEELEY J M,SELLS D A,BATES L B. Experiences with coupling facility control systems with control volume facility models[R].AIAA 2004-932,2004.
    [7] MONTGOMERY P A,BURDETTE R,KRUPP B. A real-time turbine engine facility model and simulation for test operations modernization and integration[R]. ASME Paper 2000-GT-0576,2000.
    [8] MONTGOMERY P A,BURDETTE R, WILHITE L,et al. Modernization of a turbine engine test facility utilizing a real-time facility model and simulation[R]. ASME Paper 2001-GT-0573,2001.
    [9] KLEPPER J,SISK S,SALITA S,et al. Development of a facility simulator for implementation of an automated control system[R]. AIAA 2002-2785,2002.
    [10] BOYLSTON B,MILHOAN A. Upgrades to the aerodynamic and propulsion test unit control system and simulator in support of the medium scale components direct-connect test program[R]. AIAA 2014-2766,2014.
    [11] BIERKAMP J,KÖCKE S,STAUDACHER I S,et al. Influence of ATF dynamics and controls on jet engine performance[R]. ASME Paper 2007-GT-27586,2007.
    [12] KING B M,FREDERIK J S. Evaluation of AEDC concurrent engine test capability[R]. AIAA-2008-1660,2008.
    [13] BATES L B,WALTERMIRE S W. Investigating facility anomalies at AEDC[R]. AIAA 2010-1735,2010.
    [14] WEISSER M,BOLK S,STAUDACHER S. Hard-in-the-loop-simulation of a feedforward multivariable controller for the altitude test facility at the University of Stuttgart[R]. Stuttgart,Germany: Deutscher Luft-und Raumfahrtkongress,2013.
    [15] BEST J T. Technical workforce needs for a new national trisonic ground test capability[R]. AIAA-2010-140,2010.
    [16] 裴希同,朱美印,张松,等. 一种特种流量特性计算的经验公式迭代方法[J]. 燃气涡轮试验与研究,2016,29(5): 35-39. doi: 10.3969/j.issn.1672-2620.2016.05.008

    PEI Xitong,ZHU Meiyin,ZHANG Song,et al. An iterative method of empirical formula for the calculation of special valve flow characteristics[J]. Gas Turbine Experiment and Research,2016,29(5): 35-39. (in Chinese) doi: 10.3969/j.issn.1672-2620.2016.05.008
    [17] 裴希同,张松,但志宏,等. 高空台飞行环境模拟系统数字建模与仿真研究[J]. 推进技术,2019,40(5): 1144-1152. doi: 10.13675/j.cnki.tjjs.180262

    PEI Xitong,ZHANG Song,DAN Zhihong,et al. Study on digital modeling and simulation of altitude test facility flight environment simulation system[J]. Journal of Propulsion Technology,2019,40(5): 1144-1152. (in Chinese) doi: 10.13675/j.cnki.tjjs.180262
    [18] 朱美印,王曦,裴希同,等. 飞行环境模拟系统多容腔流-固传热建模[J]. 推进技术,2020,41(12): 2848-2859. doi: 10.13675/j.cnki.tjjs.190628

    ZHU Meiyin,WANG Xi,PEI Xitong,et al. Multi-volume fluid-solid heat transfer modeling for flight environment simulation system[J]. Journal of Propulsion Technology,2020,41(12): 2848-2859. (in Chinese) doi: 10.13675/j.cnki.tjjs.190628
    [19] 冯青. 工程热力学[M]. 西安: 西北工业大学出版社,2006.
    [20] 马卡洛夫 А Н,舍尔曼 М Я. 节流装置计算 [M]. 姚文华,译. 北京: 冶金工业出版社,1957:3-12.
    [21] 宋志安. 基于MATLAB的液压伺服控制系统分析与设计[M]. 北京: 国防工业出版社,2007.
    [22] 但志宏,张松,白克强,等. 基于扩张状态观测器的高空台进气环境模拟控制技术研究[J]. 推进技术,2021,42(9): 2119-2128. doi: 10.13675/j.cnki.tjjs.190810

    DAN Zhihong,ZHANG Song,BAI Keqiang,et al. Air intake environment simulation of altitude test facility control based on extended state observer[J]. Journal of Propulsion Technology,2021,42(9): 2119-2128. (in Chinese) doi: 10.13675/j.cnki.tjjs.190810
  • 加载中
图(22)
计量
  • 文章访问数:  352
  • HTML浏览量:  85
  • PDF量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-11
  • 网络出版日期:  2022-09-07

目录

    /

    返回文章
    返回