留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

进气畸变及非轴对称端壁造型对紧凑型压气机中介机匣性能的影响

茅晓晨 赵磊 高丽敏 刘锬韬 吴瑜

茅晓晨, 赵磊, 高丽敏, 等. 进气畸变及非轴对称端壁造型对紧凑型压气机中介机匣性能的影响[J]. 航空动力学报, 2024, 39(1):20220126 doi: 10.13224/j.cnki.jasp.20220126
引用本文: 茅晓晨, 赵磊, 高丽敏, 等. 进气畸变及非轴对称端壁造型对紧凑型压气机中介机匣性能的影响[J]. 航空动力学报, 2024, 39(1):20220126 doi: 10.13224/j.cnki.jasp.20220126
MAO Xiaochen, ZHAO Lei, GAO Limin, et al. Effects of inlet distortion and non-axisymmetric endwall modeling on performance of compact compressor intermediate duct[J]. Journal of Aerospace Power, 2024, 39(1):20220126 doi: 10.13224/j.cnki.jasp.20220126
Citation: MAO Xiaochen, ZHAO Lei, GAO Limin, et al. Effects of inlet distortion and non-axisymmetric endwall modeling on performance of compact compressor intermediate duct[J]. Journal of Aerospace Power, 2024, 39(1):20220126 doi: 10.13224/j.cnki.jasp.20220126

进气畸变及非轴对称端壁造型对紧凑型压气机中介机匣性能的影响

doi: 10.13224/j.cnki.jasp.20220126
基金项目: 国家自然科学基金重点项目(51790512)和青年项目(52106057); 引智计划(B17037); 中央高效基本科研业务费(D5000210483); 翼型、叶栅空气动力学国家级重点实验室基金(D5150210006,D5050210015)
详细信息
    作者简介:

    茅晓晨(1989-),男,副教授,博士,主要从事叶轮机械气动热力学研究。E-mail:maoxiao_chen@nwpu.edu.cn

    通讯作者:

    高丽敏(1973-),女,教授,博士,主要从事叶轮机械气动热力学研究。E-mail:gaolm@nwpu.edu.cn

  • 中图分类号: V231.3

Effects of inlet distortion and non-axisymmetric endwall modeling on performance of compact compressor intermediate duct

  • 摘要:

    为掌握畸变进气下非轴对称端壁造型对大径向落差长度比紧凑型压气机中介机匣气动特性的影响机制,采用数值模拟方法研究了畸变进气条件下中介机匣的流动特性,并进一步探索了轮毂非轴对称端壁造型对中介机匣内部流动结构和节流特性的影响。结果显示:进气畸变下中介机匣出口流场高总压损失与畸变主要来源于轮毂表面附面层分离产生的旋流和支板角区分离的共同作用。采用提出的基于三角函数的非轴对称端壁造型方法可有效消除轮毂表面的分离螺旋节点和支板角区分离,使中介机匣性能得到明显提升,总压损失系数降低约11.4%,且畸变进气下轮毂端壁造型对中介机匣节流特性的影响规律与均匀进气不同。

     

  • 图 1  涡扇发动机结构示意图[1]

    Figure 1.  Structure schematic diagram of a turbofan engine[1]

    图 2  紧凑型压气机中介机匣示意图

    Figure 2.  Schematic diagram of the compact compressor intermediate duct

    图 3  风扇出口总压径向分布

    Figure 3.  Radial distribution of total pressure at the fan outlet

    图 4  端壁造型前后型线对比

    Figure 4.  Comparison of endwall profiles before and after contouring

    图 5  端壁造型波动函数示意图

    Figure 5.  Schematic diagrams of the wave functions of endwall contouring

    图 6  轮毂造型后型面波动高度分布

    Figure 6.  Contours of perturbation height for the contoured endwall

    图 7  不同进气条件下原型中介机匣出口截面总压恢复系数分布

    Figure 7.  Exit total pressure recovery coefficient for the datum design at different inlet flow conditions

    图 8  不同进气条件下原型中介机匣轮毂表面极限流线分布

    Figure 8.  Limiting streamlines distribution on the hub for the datum design at different inlet flow conditions

    图 9  节点s1s2附近空间流线及3个不同截面总压恢复系数分布

    Figure 9.  3D streamlines around nodes of s1, s2 and total pressure recovery coefficient distribution on three slices

    图 10  不同进气条件下原型中介机匣支板表面极限流线分布

    Figure 10.  Limiting streamlines distribution on the strut surface at different inlet flow conditions

    图 11  端壁造型后中介机匣出口的总压恢复系数分布

    Figure 11.  Total pressure recovery coefficient on the exit plane for the contoured design

    图 12  畸变进气条件下端壁造型后支板和轮毂表面极限流线分布

    Figure 12.  Limiting streamlines distribution on the strut surface and hub at the inlet distortion condition

    图 13  不同进气条件下端壁造型前后中介机匣总压恢复系数-相对流量特性

    Figure 13.  Characteristic map (total pressure recovery coefficient to relative flow rate) before and after contouring at different inlet flow conditions

    图 14  不同工作点和进气条件下原型中介机匣出口截面总压恢复系数分布

    Figure 14.  Total pressure recovery coefficient distribution on the exit plane for the datum design at different working and inlet flow conditions

    图 15  近最大流量点下通道中部子午面马赫数云图

    Figure 15.  Contours of Mach number on the meridional plane in the middle of the passage for the datum design at the near-maximum flow rate condition

    图 16  近最大流量点原型中介机匣轮毂表面极限流线

    Figure 16.  Limiting streamlines on the hub for the datum design at the near-maximum flow condition

    图 17  近最大流量点原型中介机匣支板表面极限流线

    Figure 17.  Strut surface limiting streamlines for the datum design at the near-maximum flow condition

    图 18  近最大流量点下端壁造型后中介机匣轮毂表面极限流线

    Figure 18.  Limiting streamlines on the hub at the near-maximum flow condition after contouring

    表  1  压气机中介机匣的主要特征几何参数

    Table  1.   Main geometric parameters of the compressor intermediate duct

    参数数值
    径向落差长度比(∆R/L0.71
    进出口面积比 (Ain/Aout1.0
    支板最大厚度与弦长比(t/c0.225
    支板倾角αs/(°)25
    下载: 导出CSV
  • [1] SIGGEIRSSON E M V,ANDERSSON N,BURAK M O. Numerical and experimental aerodynamic investigation of an S-shaped intermediate compressor duct with bleed[J]. Journal of Turbomachinery,2021,143(10): 101003. doi: 10.1115/1.4050670
    [2] WALKER A D,MARIAH I,HALL C. An experimental, aerodynamic evaluation of design choices for a low-pressure compressor transition duct[J]. Journal of Turbomachinery,2021,143(9): 091004.1-091004.14.
    [3] BRITCHFORD K M, MANNERS A P, MCGUIRK J J, et al. Measurement and prediction of flow in annular S-shaped ducts[M]//Engineering Turbulence Modelling and Experiments. Amsterdam: Elsevier, 1993: 785-794.
    [4] BRITCHFORD K M, CARROTTE J F, KIM J H, et al. The effect of operating conditions on the aerodynamic performance of an integrated OGV and S-shaped duct[R]. ASME Paper 2001-GT-0347, 2001.
    [5] DUEñAS C O, MILLER R J, HODSON H P, et al. Effect of length on compressor inter-stage duct performance[R]. ASME Paper GT2007-27752, 2007.
    [6] 阙晓斌,侯安平,周盛. 基于壁面压力梯度控制的压气机S形过渡段设计[J]. 航空学报,2010,31(3): 459-465.

    QUE Xiaobin,HOU Anping,ZHOU Sheng. S-shaped compressor transition duct design based on wall pressure gradient control[J]. Acta Aeronautica et Astronautica Sinica,2010,31(3): 459-465. (in Chinese)
    [7] 高丽敏,冯旭栋,陈璇,等. 关于压气机过渡段设计方法的探讨[J]. 航空学报,2013,34(5): 1057-1063. doi: 10.7527/S1000-6893.2013.0194

    GAO Limin,FENG Xudong,CHEN Xuan,et al. Exploration about compressor intermediate duct design[J]. Acta Aeronautica et Astronautica Sinica,2013,34(5): 1057-1063. (in Chinese) doi: 10.7527/S1000-6893.2013.0194
    [8] GAO Limin,DENG Xiaoming,FENG Xudong,et al. Effect of inlet conditions on compressor intermediate duct[J]. Proceedings of the Institution of Mechanical Engineers: Part G Journal of Aerospace Engineering,2015,229(6): 1154-1168. doi: 10.1177/0954410014542624
    [9] 屠秋野,陈劼,蒋平,等. 压气机过渡段造型及三维数值模拟[J]. 航空动力学报,2015,30(6): 1414-1422. doi: 10.13224/j.cnki.jasp.2015.06.017

    TU Qiuye,CHEN Jie,JIANG Ping,et al. Geometric modeling and 3-D numerical simulation for gooseneck of compressor[J]. Journal of Aerospace Power,2015,30(6): 1414-1422. (in Chinese) doi: 10.13224/j.cnki.jasp.2015.06.017
    [10] BU H X,TAN H J,CHEN H,et al. Investigation on secondary flow characteristics in a curved annular duct with struts[J]. Flow, Turbulence and Combustion,2016,97(1): 27-44. doi: 10.1007/s10494-015-9674-5
    [11] 辛亚楠,李家军,韩阳,等. 大径向落差长度比中介机匣气动特性研究[J]. 推进技术,2017,38(4): 808-814.

    XIN Yanan,LI Jiajun,HAN Yang,et al. Numerical study on aerodynamic characteristics of a large radius change to length ratio intermediate duct[J]. Journal of Propulsion Technology,2017,38(4): 808-814. (in Chinese)
    [12] 向宏辉,张良,陆庆飞,等. 进气条件对压气机中介机匣流场影响的试验研究[J]. 燃气涡轮试验与研究,2011,24(4): 15-19. doi: 10.3969/j.issn.1672-2620.2011.04.005

    XIANG Honghui,ZHANG Liang,LU Qingfei,et al. Experimental investigation of inlet conditions’ effect on compressor intermediate casing flow field[J]. Gas Turbine Experiment and Research,2011,24(4): 15-19. (in Chinese) doi: 10.3969/j.issn.1672-2620.2011.04.005
    [13] WALKER A D,MARIAH I,TSAKMAKIDOU D,et al. The influence of fan root flow on the aerodynamic of a low-pressure compressor transition duct[J]. Journal of Turbomachinery,2020,142(1): 011002.1-011002.11.
    [14] 高丽敏,吴瑜,邓卫敏,等. 压气机中介机匣畸变效应的研究[J]. 推进技术,2021,42(2): 272-280. doi: 10.13675/j.cnki.tjjs.190673

    GAO Limin,WU Yu,DENG Weimin,et al. Effects of inlet distortion on compressor intermediate duct[J]. Journal of Propulsion Technology,2021,42(2): 272-280. (in Chinese) doi: 10.13675/j.cnki.tjjs.190673
    [15] LUO J Q, MCBEAN I, LIU F. Optimization of endwall contours of a turbine blade row using an adjoint method[R]. ASME Paper GT2011-46163, 2011.
    [16] 曾军,唐洪飞. 非轴对称端壁技术的应用及发展[J]. 航空科学技术,2012(3): 5-8. doi: 10.3969/j.issn.1007-5453.2012.03.002

    ZENG Jun,TANG Hongfei. Application and development of non-axisymmetric endwall technology[J]. Aeronautical Science & Technology,2012(3): 5-8. (in Chinese) doi: 10.3969/j.issn.1007-5453.2012.03.002
    [17] ZHENG Xinqian,SUN Zhenzhong,KAWAKUBO T,et al. Stability improvement of a turbocharger centrifugal compressor by a nonaxisymmetric vaned diffuser[J]. Journal of Turbomachinery,2018,140(4): 041007.1-041007.13.
    [18] ROSE M G. Non-axisymmetric endwall profiling in the HP NGV’s of an axial flow gas turbine[R]. ASME Paper 94-GT-249, 1994.
    [19] NAYLOR E M J,DUEÑAS C O,MILLER R J,et al. Optimization of nonaxisymmetric endwalls in compressor S-shaped ducts[J]. Journal of Turbomachinery,2010,132(1): 011011.1-011011.10.
    [20] KARAKASIS M K, NAYLOR E M J, MILLER R J, et al. The effect of an upstream compressor on a non-axisymmetric S-duct[R]. ASME Paper GT2010-23404, 2010.
    [21] JIN Donghai,LIU Xiwu,ZHAO Weiguang,et al. Optimization of endwall contouring in axial compressor S-shaped ducts[J]. Chinese Journal of Aeronautics,2015,28(4): 1076-1086. doi: 10.1016/j.cja.2015.06.011
    [22] 韩阳, 李家军, 辛亚楠, 等. 大径向落差长度比中介机匣非轴对称端壁造型方法数值模拟研究[R]. 辽宁 大连: 中国航天第三专业信息网第38届技术交流会暨第2届空天动力联合会议, 2017.
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  113
  • HTML浏览量:  49
  • PDF量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-13
  • 网络出版日期:  2023-08-03

目录

    /

    返回文章
    返回