留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

射流预冷对航空发动机进气温度的特征性分析

冯爽 李宝宽 杨晓晰 谢业平 张海洋

冯爽, 李宝宽, 杨晓晰, 等. 射流预冷对航空发动机进气温度的特征性分析[J]. 航空动力学报, 2024, 39(7):20220131 doi: 10.13224/j.cnki.jasp.20220131
引用本文: 冯爽, 李宝宽, 杨晓晰, 等. 射流预冷对航空发动机进气温度的特征性分析[J]. 航空动力学报, 2024, 39(7):20220131 doi: 10.13224/j.cnki.jasp.20220131
FENG Shuang, LI Baokuan, YANG Xiaoxi, et al. Response surface characteristic analysis of jet precooling on aero-engine inlet temperature[J]. Journal of Aerospace Power, 2024, 39(7):20220131 doi: 10.13224/j.cnki.jasp.20220131
Citation: FENG Shuang, LI Baokuan, YANG Xiaoxi, et al. Response surface characteristic analysis of jet precooling on aero-engine inlet temperature[J]. Journal of Aerospace Power, 2024, 39(7):20220131 doi: 10.13224/j.cnki.jasp.20220131

射流预冷对航空发动机进气温度的特征性分析

doi: 10.13224/j.cnki.jasp.20220131
基金项目: 中央高校基本科研业务费专项基金(N2025013)
详细信息
    作者简介:

    冯爽(1997-),女,硕士生,主要研究领域为多相流热物理。E-mail:475160225@qq.com

    通讯作者:

    李宝宽(1963-),男,教授、博士生导师,博士,主要研究领域为多相流热物理。E-mail:libk@mail.neu.edu.cn

  • 中图分类号: V236

Response surface characteristic analysis of jet precooling on aero-engine inlet temperature

  • 摘要:

    为了研究射流预冷技术对预压段温度场的影响,采用欧拉-拉格朗日方法建立了液滴雾化蒸发过程的三维数学模型。气液两相之间的传质和动量交换是通过双向耦合的方法实现的。通过与已有试验结果的比较,验证了该数学模型的准确性。采用响应面法分析了水气比、喷射速度、液滴尺寸和喷嘴锥角对航空发动机进气温度的影响,建立了四因素三水平响应面法。结果表明:发动机进气空气温度的降温比为3.67%~26.02%。建立了基于多元回归方法的可视化非线性多变量设计优化方程,得到了水气比、喷射速度、液滴尺寸和喷嘴锥角对进气冷却效果的影响。当水气比为0.08、液滴尺寸为10.47 μm、喷射速度为39.52 m/s、喷嘴锥角为24.79°时,发动机最低预压缩冷却段温度为449.60 K。

     

  • 图 1  物理模型及网格划分

    Figure 1.  Physical model and grid division

    图 2  网格无关性验证

    Figure 2.  Grid independence verification

    图 3  不同网格数量在3D截面处的温度分布

    Figure 3.  Temperature distribution of different mesh numbers at 3D section

    图 4  不同截面试验温度和模拟温度的比较

    Figure 4.  Comparison of test temperature and simulated temperature of different sections

    图 5  Box-Behnken组合设计法的实验点分布

    Figure 5.  Distribution of experimental points of Box-Behnken combined design method

    图 6  预测值-实际值、概率-预测值分布图

    Figure 6.  Distribution of residual error and predicted value,predicted value and actual value

    图 7  射流预冷参数对发动机进气温度的交互影响

    Figure 7.  Interaction of jet precooling parameters on engine inlet air temperature

    图 8  射流预冷参数对发动机进气温度的影响

    Figure 8.  Effect of parameters on engine inlet air temperature

    图 9  液滴运动轨迹图和各截面的温度云图

    Figure 9.  Droplet trajectory diagram and temperature cloud diagram of each section

    图 10  不同水气比下出口截面的温度畸变分析图

    Figure 10.  Temperature distortion analysis of outlet section under different water gas ratio

    图 11  不同水气比下不同截面平均温度对比图

    Figure 11.  Comparison diagram of average temperature of different sections under different water gas ratio

    图 12  不同液滴粒径下不同截面平均温度对比图

    Figure 12.  Comparison of average temperature of different sections under different droplet sizes

    表  1  设计因素编码与水平

    Table  1.   Code and level of design factors

    因素变量代号水平值
    −10+1
    水气比X10.020.050.08
    液滴粒径X21055100
    喷射速度X31055100
    喷嘴锥角X4154575
    下载: 导出CSV

    表  2  响应面试验设计和结果

    Table  2.   Response surface test design and results

    试验号水气比液滴粒径/μm喷射速度/(m/s)喷嘴锥角/(°)
    10.02105545
    20.08105545
    30.021005545
    40.081005545
    50.05551015
    60.055510015
    70.05551075
    80.055510075
    90.02555515
    100.08555515
    110.02555575
    120.08555575
    130.05101045
    140.051001045
    150.051010045
    160.0510010045
    170.02551045
    180.08551045
    190.025510045
    200.085510045
    210.05105515
    220.051005515
    230.05105575
    240.051005575
    250.05555545
    260.05555545
    270.05555545
    280.05555545
    290.05555545
    下载: 导出CSV

    表  3  回归方程的方差分析表

    Table  3.   Variance analysis of regression equation

    来源平方和均方误差FP备注
    模型35601.002542.93270.52< 0.0001模型显著
    X121727.6621727.662311.40< 0.0001
    X29855.069855.061048.38< 0.0001
    X31412.571412.57150.27< 0.0001
    X4308.26308.2632.79< 0.0001
    X1X2732.44732.4477.92< 0.0001
    X1X3163.34163.3417.380.0009
    X2X3457.71457.7148.69< 0.0001
    X2X452.0252.025.530.0338
    X3X4100.59100.5910.700.0056
    X12741.86741.8678.92< 0.0001
    X3²64.0464.046.810.0206
    残差131.609.40
    失拟项131.6013.16
    纯误差00
    下载: 导出CSV

    表  4  回归方程误差统计分析

    Table  4.   Statistical analysis of regression equation error

    统计项目数值
    标准偏差3.07
    变异系数0.5771
    精密度64.5877
    多元相关系数0.9963
    调整后的多元相关系数0.9926
    预测的多元相关系数0.9788
    下载: 导出CSV
  • [1] 尚守堂,田方超,扈鹏飞. 涡轮发动机射流预冷关键技术分析[J]. 航空科学技术,2018,29(1): 1-3.

    SHANG Shoutang,TIAN Fangchao,HU Pengfei. Key technology analysis of mass injecting pre-compressor cooling turbine engine[J]. Aeronautical Science & Technology,2018,29(1): 1-3. (in Chinese)
    [2] HALL E W, WILCOX EC. Theoretical Comparison of Several Methods of Thrust Augmentation for Turbojet Engines[R]. NACA Report-992, 1950.
    [3] YOUNG D A, OLDS J. Responsive access small cargo affordable launch (RASCAL) independent performance evaluation[R]. AIAA-2005-3241, 2005.
    [4] KLOESEL K, CLARK C. Preliminary MIPCC enhanced F-4 and F-15 performance characteristics for a first stage reusable launch vehicle[R]. AIAA-2013-5528, 2013.
    [5] CARTER P, BALEPIN V. Mass injection and precompressor cooling engines analyses[R]. AIAA-2002-4127, 2002.
    [6] CHAKER M A,MEHER-HOMJI C B,MEE T III. Inlet fogging of gas turbine engines: experimental and analytical investigations on impaction pin fog nozzle behavior[J]. Journal of Engineering for Gas Turbines and Power,2006,128(4): 826-839. doi: 10.1115/1.1808429
    [7] CHAKER M,MEHER-HOMJI C B,MEE T III. Inlet fogging of gas turbine engines: Part Ⅰ fog droplet thermodynamics, heat transfer, and practical considerations[J]. Journal of Engineering for Gas Turbines and Power,2004,126(3): 545-558. doi: 10.1115/1.1712981
    [8] CHAKER M, MEHER-HOMJI C B, MEE T. Inlet fogging of gas turbine engines: Part B fog droplet sizing analysis, nozzle types, measurement and testing[R]. The Netherlands, Amsterdam: ASME Turbo Expo: Power for Land, Sea, and Air, 2009: 429-441.
    [9] 商旭升,蔡元虎,陈玉春,等. 高速飞行器用射流预冷却涡轮基发动机性能模拟[J]. 中国空间科学技术,2005,25(4): 54-58.

    SHANG Xusheng,CAI Yuanhu,CHEN Yuchun,et al. Performance simulation of the mass injection pre-cooled TBCC engine for hypersonic vehicles[J]. Chinese Space Science and Technology,2005,25(4): 54-58. (in Chinese)
    [10] 涂洪妍,邓远灏,康松,等. 水气比对射流预冷喷射特性影响的数值研究[J]. 推进技术,2017,38(6): 1302-1309.

    TU Hongyan,DENG Yuanhao,KANG Song,et al. Numerical simulation for effects for water/air ratio on injection characteristics with water injection pre-compressor cooling[J]. Journal of Propulsion Technology,2017,38(6): 1302-1309. (in Chinese)
    [11] 耿欣,薛秀生,王晓良. 射流预冷试验用温度探针的设计与测试[J]. 航空发动机,2020,46(3): 84-89.

    GENG Xin,XUE Xiusheng,WANG Xiaoliang. Design and test of temperature probe for jet pre-cooling test[J]. Aeroengine,2020,46(3): 84-89. (in Chinese)
    [12] 耿欣,王晓良,薛秀生. 射流预冷试验防水温度传感器设计[J]. 航空发动机,2019,45(2): 69-73.

    GENG Xin,WANG Xiaoliang,XUE Xiusheng. Design of water-proof temperature sensor for jet pre-cooling test[J]. Aeroengine,2019,45(2): 69-73. (in Chinese)
    [13] 林阿强,郑群,吴锋,等. 航空涡轮发动机射流预冷技术研究[J]. 推进技术,2020,41(4): 721-728.

    LIN Aqiang,ZHENG Qun,WU Feng,et al. Investigation on mass injection pre-cooling technology of aero-turbine engine[J]. Journal of Propulsion Technology,2020,41(4): 721-728. (in Chinese)
    [14] 叶巍,乔渭阳,侯敏杰. 发动机在进气温度畸变条件下的特性研究[J]. 推进技术,2008,29(6): 677-680.

    YE Wei,QIAO Weiyang,HOU Minjie. Study for the effects of inlet temperature distortion on engine performance[J]. Journal of Propulsion Technology,2008,29(6): 677-680. (in Chinese)
    [15] 谢业平,刘永泉,潘宝军. 真实进气条件下发动机气动稳定性计算方法[J]. 航空动力学报,2019,34(4): 804-812.

    XIE Yeping,LIU Yongquan,PAN Baojun. Aerodynamic calculation method of engine stability under actual inlet condition[J]. Journal of Aerospace Power,2019,34(4): 804-812. (in Chinese)
    [16] 刘旭峰,常鸿雯,薛洪科,等. 射流预冷装置温降与流阻特性试验研究[J]. 航空发动机,2018,44(2): 81-86.

    LIU Xufeng,CHANG Hongwen,XUE Hongke,et al. Investigation on temperature drop and flow resistance characteristics of mass injection pre-compressor cooling device[J]. Aeroengine,2018,44(2): 81-86. (in Chinese)
    [17] 林阿强,刘高文,吴锋,等. 高马赫数涡轮发动机射流预冷特性研究[J]. 推进技术,2021,42(10): 2218-2228.

    LIN Aqiang,LIU Gaowen,WU Feng,et al. Mass injection pre-compressor cooling characteristics in high Mach number turbine engine[J]. Journal of Propulsion Technology,2021,42(10): 2218-2228. (in Chinese)
    [18] 陆禹铭,徐倩楠,吴锋,等. 喷水射流预冷对发动机进气温度及流场变化影响的数值研究[J]. 推进技术,2020,41(9): 1999-2010.

    LU Yuming,XU Qiannan,WU Feng,et al. Numerical study on effects of water injection pre-compressor cooling on engine inlet temperature and flow field change[J]. Journal of Propulsion Technology,2020,41(9): 1999-2010. (in Chinese)
    [19] HOSSEINZADEH A,NAJAFPOOR A A,JAFARI A J,et al. Application of response surface methodology and artificial neural network modeling to assess non-thermal plasma efficiency in simultaneous removal of BTEX from waste gases: effect of operating parameters and prediction performance[J]. Process Safety and Environmental Protection,2018,119: 261-270. doi: 10.1016/j.psep.2018.08.010
    [20] YOLMEH M,JAFARI S M. Applications of response surface methodology in the food industry processes[J]. Food and Bioprocess Technology,2017,10(3): 413-433. doi: 10.1007/s11947-016-1855-2
    [21] AZARI A,GHOLAMI M,TORKSHAVAND Z,et al. Evaluation of basic violet 16 adsorption from aqueous solution by magnetic zero valent iron-activated carbon nanocomposite using response surface method: isotherm and kinetic studies[J]. Journal of Mazandaran University of Medical Sciences,2015,24: 333-347.
    [22] LIN Aqiang,ZHOU Jie,FAWZY H,et al. Evaluation of mass injection cooling on flow and heat transfer characteristics for high-temperature inlet air in a MIPCC engine[J]. International Journal of Heat and Mass Transfer,2019,135: 620-630. doi: 10.1016/j.ijheatmasstransfer.2019.02.025
    [23] 李艳军,常鸿雯,薛洪科,等. 射流装置降温性能评估及敏感性分析[J]. 航空发动机,2017,43(1): 85-90.

    LI Yanjun,CHANG Hongwen,XUE Hongke,et al. Sensibility analysis and evaluation of cooling performance on injection device[J]. Aeroengine,2017,43(1): 85-90. (in Chinese)
    [24] LAWSON J M,GANAPATHISUBRAMANI B. Mass transfer from small spheroids suspended in a turbulent fluid[J]. Journal of Fluid Mechanics,2021,929: 1-19.
    [25] 李莉,张赛,何强,等. 响应面法在试验设计与优化中的应用[J]. 实验室研究与探索,2015,34(8): 41-45.

    LI Li,ZHANG Sai,HE Qiang,et al. Application of response surface methodology in experiment design and optimization[J]. Research and Exploration in Laboratory,2015,34(8): 41-45. (in Chinese)
    [26] 郭勤涛,张令弥,费庆国. 用于确定性计算仿真的响应面法及其试验设计研究[J]. 航空学报,2006,27(1): 55-61.

    GUO Qintao,ZHANG Lingmi,FEI Qingguo. Response surface method and its experimental design for deterministic computer simulation[J]. Acta Aeronautica et Astronautica Sinica,2006,27(1): 55-61. (in Chinese)
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  57
  • HTML浏览量:  34
  • PDF量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-15
  • 网络出版日期:  2023-10-17

目录

    /

    返回文章
    返回