Radial clamping force distribution model and parameter sensitivity analysis of spool valve couples
-
摘要:
为寻求提高批量电液伺服阀分辨率一致性的制造工艺方法,针对滑阀副径向尺寸公差范围内参数摄动作用下卡紧力大小的不确定性,建立了径向卡紧力数学模型,获得了径向尺寸参数摄动下的滑阀副径向卡紧力分布特性。建立了工艺参数与径向卡紧力分布特征参数之间映射关系的响应面代理模型,并据此开展了滑阀副径向卡紧力分布特征参数对工艺参数的全局灵敏度分析。结果表明:径向卡紧力服从Weibull分布,改变阀芯圆柱度相比改变径向间隙对滑阀副径向卡紧力影响较小。相比减小径向间隙变动范围,降低径向间隙下限值对提高径向卡紧力一致性更加有效。而相比降低径向间隙下限值,减小径向间隙变动范围对从整体上减小径向卡紧力更为显著。
Abstract:In order to find a manufacturing process method for improving the resolution consistency of batch electro-hydraulic servo valves, a radial clamping force distribution model was established to describe the uncertainty of clamping force under parameter perturbation within the radial dimension tolerance range. And the distribution characteristics of the radial clamping force of spool valve couples were obtained. Furthermore, a response surface surrogate model of the mapping relationship between process parameters and radial clamping force distribution characteristic parameters was established. On this basis, global sensitivity analysis of radial clamping force distribution characteristic parameters to process parameters was carried out. The results showed that with the perturbation of radial dimension parameter, the radial clamping force was subject to Weibull distribution. Compared with the radial clearance, spool’s cylindricity had less effect for radial clamping force. Compared with reducing the variation range of the radial clearance, reducing lower limit of radial clearance was more effective to improve the consistency of radial clamping force. Compared with reducing the lower limit of radial clearance, reducing the variation range of radial clearance was more significant to reduce radial clamping force as a whole.
-
表 1 滑阀副基本尺寸参数
Table 1. Basic dimension parameters of the spool valve couple
mm 参数 数值 阀芯公称直径d 11.1 节流口面积梯度Ws 1.02 凸肩1、凸肩3长度L2 5.4 凸肩2长度L0 8.8 阀杆长度L1 12.9 密封段1~4轴向长度ls1 0.6 密封段5轴向长度ls2 0.8 均压槽1~3宽度le1 0.4 均压槽4宽度le2 1.0 表 2 滑阀副径向配合状态参数样本
Table 2. Samples of the radial fitting state parameters of the spool valve couple
序号 d1/mm d2/mm d3/mm d4/mm d5/mm d6/mm e0/μm αs/10−6 (°) 1 11.09681 11.09687 11.09671 11.09670 11.09697 11.09675 −1.48574 2.68312 2 11.09642 11.09728 11.09701 11.09673 11.09636 11.09648 −1.48129 −9.93036 3 11.09680 11.09702 11.09696 11.09697 11.09673 11.09659 −1.47020 −8.22832 4 11.09671 11.09682 11.09701 11.09677 11.09692 11.09713 −1.46372 5.82135 5 11.09698 11.09697 11.09674 11.09694 11.09682 11.09691 −1.46177 −3.3419 6 11.09692 11.09695 11.09653 11.09656 11.09706 11.09689 −1.46095 0.29002 7 11.09678 11.09685 11.09686 11.09699 11.09700 11.09685 −1.44841 1.14199 8 11.09681 11.09713 11.09706 11.09653 11.09705 11.09666 −1.43981 −0.98078 9 11.09718 11.09700 11.09696 11.09704 11.09650 11.09662 −1.43122 −3.47929 10 11.09704 11.09663 11.09681 11.09685 11.09708 11.09663 −1.42025 −1.38687 $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ $\vdots $ 50000 11.09623 11.09686 11.09687 11.09687 11.09687 11.09659 1.54406 −0.40651 -
[1] 王彬. 航空发动机液压控制系统[M]. 北京: 科学出版社, 2019. [2] 来晨阳, 郭迎清, 于华锋. 基于RF-SVR的燃油计量装置性能衰退检测和剩余寿命估计方法[J]. 航空动力学报, 2019, 34(7): 1624-1632.LAI Chenyang, GUO Yingqing, YU Huafeng. Fuel metering unit performance degradation detection and remaining useful life estimation method based on RF-SVR[J]. Journal of Aerospace Power, 2019, 34(7): 1624-1632. (in Chinese) [3] WANG Bin,ZHAO Haocen,YU Ling,et al. Study of temperature effect on servovalve-controlled fuel metering unit[J]. Journal of Engineering for Gas Turbines and Power,2015,137(6): 061503.1-061503.7. [4] MASUDA S,SHIMIZU F,FUCHIWAKI M,et al. Modelling and reducing fuel flow pulsation of a fuel-metering system during pump mode switching in a turbofan engine[J]. IOP Conference Series:Earth and Environmental Science,2019,240: 052030.1-052030.12. [5] 陈元章. 滑阀副配合对伺服阀性能的影响研究[J]. 机床与液压,2021,49(5): 107-111. doi: 10.3969/j.issn.1001-3881.2021.05.021CHEN Yuanzhang. Research on the effect of spool valve pairs fit on servo valve performance[J]. Machine Tool & Hydraulics,2021,49(5): 107-111. (in Chinese) doi: 10.3969/j.issn.1001-3881.2021.05.021 [6] 容同生,戎品顺. 电液伺服阀分辨率研究[J]. 液压与气动,1982(2): 16-19. [7] 王旭永,蒋晓夏,刘庆和,等. 伺服阀分辨率影响电液位置伺服系统低速性能的研究[J]. 液压与气动,1994(4): 5-7. [8] 贾涛,郑树伟,耿伟,等. 某燃油电液伺服阀滑阀级热变形分析[J]. 北京理工大学学报,2020,40(5): 496-500.JIA Tao,ZHENG Shuwei,GENG Wei,et al. Analysis on the thermal deformation of fuel electro-hydraulic servo slide valve[J]. Transactions of Beijing Institute of Technology,2020,40(5): 496-500. (in Chinese) [9] ZHANG Yang,WANG Shaoping,SHI Jian,et al. Evaluation of thermal effects on temperature-sensitive operating force of flow servo valve for fuel metering unit[J]. Chinese Journal of Aeronautics,2020,33(6): 1812-1823. doi: 10.1016/j.cja.2019.09.011 [10] 陈佳,袁朝辉,郭强. 带有矩形槽滑阀的数学模型分析[J]. 西北工业大学学报,2018,36(3): 516-521. doi: 10.3969/j.issn.1000-2758.2018.03.016CHEN Jia,YUAN Zhaohui,GUO Qiang. Mathematical model of spool valve with rectangular grooves[J]. Journal of Northwestern Polytechnical University,2018,36(3): 516-521. (in Chinese) doi: 10.3969/j.issn.1000-2758.2018.03.016 [11] 刘志强,郑长松,张小强,等. 液压滑阀配合间隙的卡紧敏感性研究[J]. 机床与液压,2017,45(3): 139-143. doi: 10.3969/j.issn.1001-3881.2017.03.032LIU Zhiqiang,ZHENG Changsong,ZHANG Xiaoqiang,et al. Study on sensitivity of hydraulic spool valve radial force in clearance[J]. Machine Tool & Hydraulics,2017,45(3): 139-143. (in Chinese) doi: 10.3969/j.issn.1001-3881.2017.03.032 [12] 訚耀保, 谢帅虎, 原佳阳, 等. 宽温域下三位四通电磁液动换向阀的几何尺寸链与卡滞特性[J]. 飞控与探测, 2019, 2(3): 95-102.YIN Yaobao, XIE Shuaihu, YUAN Jiayang, et al. Dimension chain and stiction characteristics of electrohydraulic directional valve in wide temperature range[J]. Flight Control & Detection, 2019, 2(3): 95-102. (in Chinese) [13] 刘国文,阮健,李胜,等. 2D电液比例换向阀阀芯卡紧力分析[J]. 中国机械工程,2015,26(15): 1995-1999.LIU Guowen,RUAN Jian,LI Sheng,et al. Analysis of spool cliping force for 2D electro-hydraulic proportional directional valve[J]. China Mechanical Engineering,2015,26(15): 1995-1999. (in Chinese) [14] 晏静江,柯坚,刘桓龙,等. 液压滑阀阀芯温度场的流-固-热耦合研究[J]. 中国机械工程,2014,25(6): 757-760.YAN Jingjiang,KE Jian,LIU Huanlong,et al. Research on fluid-solid-thermal coupling in temperature field of hydraulic slide valves[J]. China Mechanical Engineering,2014,25(6): 757-760. (in Chinese) [15] 陆亮,夏飞燕,訚耀保,等. 小球式旋转直驱压力伺服阀卡滞机理研究[J]. 浙江大学学报(工学版),2019,53(7): 1265-1273,1339. doi: 10.3785/j.issn.1008-973X.2019.07.004LU Liang,XIA Feiyan,YIN Yaobao,et al. Spool stuck mechanism of ball-type rotary direct drive pressure servo valve[J]. Journal of Zhejiang University (Engineering Science),2019,53(7): 1265-1273,1339. (in Chinese) doi: 10.3785/j.issn.1008-973X.2019.07.004 [16] 刘书胤,杨曙东,吴亮,等. 大通径滑阀阀体强度与配合间隙的优化设计[J]. 液压与气动,2012(5): 90-94. doi: 10.3969/j.issn.1000-4858.2012.05.034LIU Shuyin,YANG Shudong,WU Liang,et al. Optimization design of the valve body strength and fit clearance for a large diameter spool valve[J]. Chinese Hydraulics & Pneumatics,2012(5): 90-94. (in Chinese) doi: 10.3969/j.issn.1000-4858.2012.05.034 [17] 陆倩倩,阮健,李胜,等. 沉割槽对滑阀阀芯径向卡紧力的影响[J]. 西安交通大学学报,2018,52(6): 76-83. doi: 10.7652/xjtuxb201806012LU Qianqian,RUAN Jian,LI Sheng,et al. Effects of cutting groove on radial clamping force of a slide valve’s spool[J]. Journal of Xi’an Jiaotong University,2018,52(6): 76-83. (in Chinese) doi: 10.7652/xjtuxb201806012 [18] MERRITT H E. 液压控制系统[M]. 陈燕庆, 译. 北京: 科学出版社, 1976. [19] КОЛКЕР Я Д. 零件机械加工精度的数学分析[M]. 祝玉光, 译 北京: 机械工业出版社, 1983. [20] 李双路, 訚耀保, 刘敏鑫, 等. 偏转板伺服阀射流盘组件的压力特性预测与分析[J]. 华南理工大学学报(自然科学版), 2020, 48(9): 71-78.LI Shuanglu, YIN Yaobao, LIU Minxin, et al. Pressure characteristic prediction and analysis of deflector jet servo valve jet-pan components[J]. Journal of South China University of Technology (Natural Science Edition), 2020, 48(9): 71-78. (in Chinese) [21] SOBOL I M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[J]. Mathematics and Computers in Simulation,2001,55(1/2/3): 271-280.