Parameter optimization of multi-scale multi-group wide-band k-distribution models
-
摘要:
针对喷气式飞行器跨声速排气系统的高温固壁与尾喷流的发射红外辐射及其在大气中的远距离传输衰减特性的数值计算,将现有多尺度多线组宽带
k 分布气体辐射模型MSMGWB(multi-scale multi-group wide-band k-distribution model)从3~5 μm波段扩展到2~2.5、3.7~4.8、7.7~9.7 μm和8~14 μm波段,并对模型光谱吸收系数分组组合与匹配高斯积分格式的寻优方法进行了改进。56个一维算例与真实结构跨声速排气系统远程红外成像算例计算结果表明,优化后的MSMGWB模型对比多线组统计窄带模型计算精度和效率都有明显提升,尤其在3~5 μm和3.7~4.8 μm波段,综合计算精度提升近一倍的同时,计算效率分别提升了4倍和1.5倍;对比国内主流目标远程红外特性计算方法,综合计算精度提升更大,计算效率则提升了1个量级左右。Abstract:Considering the numerical calculation of remote infrared signal emitted by solid wall and hot combustion gas of jet aircraft’s transonic exhaust system, the existing multi-scale multi-group wide-band
k -distribution model (MSMGWB) was expanded from 3−5 μm wave band to 2−2.5, 3.7−4.8, 7.7−9.7 μm and 8−14 μm wave bands. Moreover, the method of finding best combination of wavenumber subinterval grouping results and Gauss integral schemes was improved. The calculation results of 56 1D cases and a 3D real-structure transonic exhaust system remote infrared imaging case indicated that the optimized MSMGWB model significantly improved computation accuracy and efficiency compared with fictitious gas-based statistical narrow-band model, especially under 3−5 μm and 3.7−4.8 μm wave bands, the comprehensive calculation accuracy was nearly doubled, and the calculation efficiency was increased by 4 times and 1.5 times, respectively. At the same time, the optimized MSMGWB model’s comprehensive calculation accuracy was improved more significantly, and calculation efficiency was improved by about an order of magnitude compared with the domestic mainstream calculation method of target remote infrared signals.-
Key words:
- gas radiation /
- k-distribution /
- wide-band model /
- multi-scale multi-group /
- infrared imaging
-
表 1 MSMGWB模型光谱吸收系数分组热力学状态样本点
Table 1. Thermodynamic state samples used for calculation of spectral absorption coefficient division of M SMGWB models
状态点 压力/Pa 温度/K x(H2O) x(CO2) x(CO)/10−7 ${\underline{\phi } _1}$ 202650 1900 0.12 0.12 0 $ {\underline{\phi } _2} $ 101325 1900 0.12 0.12 0 $ {\underline{\phi } _3} $ 50662.5 1500 0.1 0.1 0 $ {\underline{\phi } _4} $ 101325 900 0.08 0.08 0 $ {\underline{\phi } _5} $ 50662.5 900 0.08 0.08 0 $ {\underline{\phi } _6} $ 101325 300 0.034 0.00034 1.42 $ {\underline{\phi } _7} $ 101325 300 0.0068 0.00034 1.42 $ {\underline{\phi } _8} $ 91192.5 293 0.02 0.00034 1.42 $ {\underline{\phi } _9} $ 50662.5 263 0.002 0.00034 1.42 表 2 不同波段MSMGWB模型参数的优化结果及与其他模型对比
Table 2.
${\boldsymbol{f}}$ and theoretical computational costs of each model under various wave bands波段/μm MSMGWB SNBFG NB $ {M_1} $ $ {M_2} $ $ {T_0}/{\rm{K}} $ $ f $ RTE总数 $ f $ RTE总数 $ f $ RTE总数 带宽/cm−1 2~2.5 15 5 300 17.35 123 54.21 280 1813.4 800 5.0 3.7~4.8 5 10 1300 13.33 87 130.9 217 371.0 496 5.0 3~5 5 10 1900 5.59 70 216.1 350 424.0 800 6.7 3~5[21] 2 10 750 23.17 134 7.7~9.7 11 2 200 16.72 61 24.23 70 1489.9 200 5.36 8~14 10 10 1900 7.01 95 12.86 140 1213.4 428 5.0 表 3 0~7 km高度的大气热力学状态参数
Table 3. Thermodynamic state parameters in the 0−7 km atmosphere
高度/km 压力/Pa 温度/K x(H2O)/10−3 x(CO2)/10−4 x(CO)/10−7 6~7 45829.30 258.13 1.278 3.299 1.268 5~6 52243.17 264.36 1.884 3.296 1.294 4~5 59305.52 270.35 3.052 3.292 1.304 3~4 67127.81 276.35 4.930 3.286 1.325 2~3 75851.90 282.35 7.863 3.276 1.365 1~2 85477.77 287.56 11.70 3.263 1.410 0~1 96056.10 292.06 16.13 3.248 1.453 表 4 三维算例MSMGWB模型远程红外成像最大计算误差
Table 4. Maximum calculation error of MSMGWB model in the 3D case
波段/μm 最大计算误差/% 含海盐气溶胶环境 无气溶胶环境 2~2.5 −8.0~+10.2(L=20 km) −12.2~+11.6(L=70 km) 3.7~4.8 −4.3~+4.8(L=20 km) −1.3~+3.9(L=100 km) 3~5 −7.5~+3.7(L=20 km) −8.3~+0.3(L=100 km) 7.7~9.7 −9.1~+2.5(L=20 km) −13.8~+3.5(L=40 km) 8~14 −7.4~+5.1(L=20 km) −14.8~+3.8(L=100 km) -
[1] HARTMANN J M,LEON R L D,TAINE J. Line-by-line and narrow-band statistical model calculations for H2O[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,1984,32(2): 119-127. doi: 10.1016/0022-4073(84)90076-1 [2] SOUFIANI A,TAINE J. High temperature gas radiative property parameters of statistical narrow-band model for H2O, CO2 and CO, and correlated-K model for H2O and CO2[J]. International Journal of Heat and Mass Transfer,1997,40(4): 987-991. doi: 10.1016/0017-9310(96)00129-9 [3] ANDRÉ F. The ℓ-distribution method for modeling non-gray absorption in uniform and non-uniform gaseous media[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2016,179: 19-32. doi: 10.1016/j.jqsrt.2016.02.034 [4] MODEST M F. Narrow-band and full-spectrum k-distributions for radiative heat transfer-correlated-k vs. scaling approximation[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2003,76(1): 69-83. doi: 10.1016/S0022-4073(02)00046-8 [5] MARIN O,BUCKIUS R O. Wide band correlated-k approach to thermal radiative transport in nonhomogeneous media[J]. Journal of Heat Transfer,1997,119(4): 719-729. doi: 10.1115/1.2824176 [6] MODEST M F. Radiative heat transfer[M]. 3rd ed. Pittsburgh, US: Academic Press, 2013 [7] MODEST M F,ZHANG Hongmei. The full-spectrum correlated-k distribution for thermal radiation from molecular gas-particulate mixtures[J]. Journal of Heat Transfer,2002,124(1): 30-38. doi: 10.1115/1.1418697 [8] RIVIÈRE P,SOUFIANI A,TAINE J. Correlated-k fictitious gas model for H2O infrared radiation in the Voigt regime[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,1995,53(3): 335-346. doi: 10.1016/0022-4073(95)90064-0 [9] ZHANG Hongmei,MODEST M F. Scalable multi-group full-spectrum correlated-k distributions for radiative transfer calculations[J]. Journal of Heat Transfer,2003,125(3): 454-461. doi: 10.1115/1.1560156 [10] KHODYKO Y V,KURSKOV A A,ANTIPOROVICH N V. Multigroup method for the calculation of selective IR radiation transfer in nonhomogeneous media[J]. Journal of Applied Spectroscopy,1986,44(3): 284-288. doi: 10.1007/BF00662065 [11] PIERROT L,RIVIÈRE P,SOUFIANI A,et al. A fictitious-gas-based absorption distribution function global model for radiative transfer in hot gases[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,1999,62(5): 609-624. doi: 10.1016/S0022-4073(98)00124-1 [12] SOUFIANI A,ANDRÉ F,TAINE J. A fictitious-gas based statistical narrow-band model for IR long-range sensing of H2O at high temperature[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2002,73(2/3/4/5): 339-347. [13] WEST R,CRISP D,CHEN L. Mapping transformations for broadband atmospheric radiation calculations[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,1990,43(3): 191-199. doi: 10.1016/0022-4073(90)90051-7 [14] ANDRÉ F,HOU Longfeng,ROGER M,et al. The multispectral gas radiation modeling: a new theoretical framework based on a multidimensional approach to k-distribution methods[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2014,147: 178-195. doi: 10.1016/j.jqsrt.2014.05.021 [15] ANDRÉ F,SOLOVJOV V P,WEBB B W,et al. Spectral mapping method based on intervals of comonotonicity for modelling of radiative transfer in non-uniform gaseous media[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2019,229: 33-39. doi: 10.1016/j.jqsrt.2019.02.030 [16] ZHANG Hua. An optimal approach to overlapping bands with correlated k distribution method and its application to radiative calculations[J]. Journal of Geophysical Research,2003,108(D20): 4641. doi: 10.1029/2002JD003358 [17] SHI Guangyu,XU Na,WANG Biao,et al. An improved treatment of overlapping absorption bands based on the correlated k distribution model for thermal infrared radiative transfer calculations[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2009,110(8): 435-451. doi: 10.1016/j.jqsrt.2009.01.008 [18] PIERROT L,SOUFIANI A,TAINE J. Accuracy of narrow-band and global models for radiative transfer in H2O, CO2, and H2O-CO2 mixtures at high temperature[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,1999,62(5): 523-548. doi: 10.1016/S0022-4073(98)00125-3 [19] HU Haiyang,WANG Qiang. Improved spectral absorption coefficient grouping strategy of wide band k-distribution model used for calculation of infrared remote sensing signal of hot exhaust systems[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2018,213: 17-34. doi: 10.1016/j.jqsrt.2018.04.014 [20] WANG Qiang,LI Yuxuan,HU Haiyang. Numerical simulation of remote infrared imaging for marine exhaust system using wide-band k-distribution model combined with a new grouping method for spectral sub-intervals[J]. Infrared Physics and Technology,2019,96: 276-290. doi: 10.1016/j.infrared.2018.11.027 [21] HU Haiyang,LI Yihan,WEI Ziyu,et al. Parameter optimization for MSMGWB model used to calculate infrared remote sensing signals emitted by hot combustion gases of hydrocarbon fuel[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2020,249: 107003.1-107003.17. [22] 谈和平, 夏新林, 刘林华. 红外辐射特性与传输的数值计算: 计算热辐射学[M]. 哈尔滨: 哈尔滨工业大学出版社, 2006. [23] WISCOMBE W J. Improved Mie scattering algorithms[J]. Applied Optics,1980,19(9): 1505-1509. doi: 10.1364/AO.19.001505 [24] SOLOVJOV V P,ANDRE F,LEMONNIER D,et al. The rank correlated SLW model of gas radiation in non-uniform media[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2017,197: 26-44. doi: 10.1016/j.jqsrt.2017.01.034 [25] LAUSSAC S,PIAZZOLA J,TEDESCHI G,et al. Development of a fetch dependent sea-spray source function using aerosol concentration measurements in the North-Western Mediterranean[J]. Atmospheric Environment,2018,193: 177-189. doi: 10.1016/j.atmosenv.2018.09.009 -