留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多尺度多线组宽带k分布模型参数优化方法

吴越 胡海洋 王强 段然 谢业平 邓洪伟

吴越, 胡海洋, 王强, 等. 多尺度多线组宽带k分布模型参数优化方法[J]. 航空动力学报, 2024, 39(2):20220144 doi: 10.13224/j.cnki.jasp.20220144
引用本文: 吴越, 胡海洋, 王强, 等. 多尺度多线组宽带k分布模型参数优化方法[J]. 航空动力学报, 2024, 39(2):20220144 doi: 10.13224/j.cnki.jasp.20220144
WU Yue, HU Haiyang, WANG Qiang, et al. Parameter optimization of multi-scale multi-group wide-band k-distribution models[J]. Journal of Aerospace Power, 2024, 39(2):20220144 doi: 10.13224/j.cnki.jasp.20220144
Citation: WU Yue, HU Haiyang, WANG Qiang, et al. Parameter optimization of multi-scale multi-group wide-band k-distribution models[J]. Journal of Aerospace Power, 2024, 39(2):20220144 doi: 10.13224/j.cnki.jasp.20220144

多尺度多线组宽带k分布模型参数优化方法

doi: 10.13224/j.cnki.jasp.20220144
基金项目: 国家科技重大专项(J2019-Ⅲ-0009-0053)
详细信息
    作者简介:

    吴越(1997-),男,硕士生,主要从事气动与红外辐射方面研究。E-mail:956727910@qq.com

    通讯作者:

    胡海洋(1981-),男,讲师、硕士生导师,博士,主要从事计算热辐射学、计算流体力学、计算传热学、气固两相流方面研究。E-mail:09451@buaa.edu.cn

  • 中图分类号: V211.3

Parameter optimization of multi-scale multi-group wide-band k-distribution models

  • 摘要:

    针对喷气式飞行器跨声速排气系统的高温固壁与尾喷流的发射红外辐射及其在大气中的远距离传输衰减特性的数值计算,将现有多尺度多线组宽带k分布气体辐射模型MSMGWB(multi-scale multi-group wide-band k-distribution model)从3~5 μm波段扩展到2~2.5、3.7~4.8、7.7~9.7 μm和8~14 μm波段,并对模型光谱吸收系数分组组合与匹配高斯积分格式的寻优方法进行了改进。56个一维算例与真实结构跨声速排气系统远程红外成像算例计算结果表明,优化后的MSMGWB模型对比多线组统计窄带模型计算精度和效率都有明显提升,尤其在3~5 μm和3.7~4.8 μm波段,综合计算精度提升近一倍的同时,计算效率分别提升了4倍和1.5倍;对比国内主流目标远程红外特性计算方法,综合计算精度提升更大,计算效率则提升了1个量级左右。

     

  • 图 1  两种一维算例示意图

    Figure 1.  Sketches of two kinds of 1D cases

    图 2  56个一维算例的燃气与空气热力学状态参数分布散点图

    Figure 2.  Thermodynamic state parameter distributions of combustion gas and atmosphere in 56 1D cases

    图 3  一维算例中三种气溶胶在2~5 μm波段的光谱消光因子

    Figure 3.  2−5 μm wave band extinction efficiency factors of three kinds of aerosols involved in the 1D cases

    图 4  参数优化流程图

    Figure 4.  Parameter optimization flow chart

    图 5  GPU与CPU计算时间对比

    Figure 5.  Optimization efficiency comparison of GPU and CPU

    图 6  不同气体辐射模型远程红外特性一维算例计算精度对比

    Figure 6.  Calculation accuracies of various models in each 1D cases under different wave bands

    图 7  部分一维算例中各模型计算结果对比

    Figure 7.  Calculation results of various models in a part of 1D cases

    图 8  跨声速排气系统的内外流场热力学状态参数空间分布与主喷管、隔热屏结构温度分布

    Figure 8.  Transonic exhaust system’s internal and external flow field and temperature distributions of primary nozzle and its heat shield

    图 9  无气溶胶环境下排气系统不同波段远距离红外成像

    Figure 9.  Remote infrared imaging of exhaust system under different wave bands under environment excluding aerosol

    图 10  不同海拔高度海盐气溶胶光谱消光系数分布与含海盐气溶胶环境下排气系统不同波段20 km远距离红外成像

    Figure 10.  Spectral extinction coefficients of sea salt aerosols at various altitudes, and 20 km remote infrared imaging of exhaust system under different wave bands under environment containing sea salt aerosol

    图 11  有无气溶胶环境下的MSMGWB模型远程红外成像计算误差分布

    Figure 11.  Error distributions of MSMGWB model in calculation of remote infrared imaging under environment containing and excluding aerosol

    表  1  MSMGWB模型光谱吸收系数分组热力学状态样本点

    Table  1.   Thermodynamic state samples used for calculation of spectral absorption coefficient division of M SMGWB models

    状态点压力/Pa温度/Kx(H2O)x(CO2x(CO)/10−7
    ${\underline{\phi } _1}$20265019000.120.120
    $ {\underline{\phi } _2} $10132519000.120.120
    $ {\underline{\phi } _3} $50662.515000.10.10
    $ {\underline{\phi } _4} $1013259000.080.080
    $ {\underline{\phi } _5} $50662.59000.080.080
    $ {\underline{\phi } _6} $1013253000.0340.000341.42
    $ {\underline{\phi } _7} $1013253000.00680.000341.42
    $ {\underline{\phi } _8} $91192.52930.020.000341.42
    $ {\underline{\phi } _9} $50662.52630.0020.000341.42
    下载: 导出CSV

    表  2  不同波段MSMGWB模型参数的优化结果及与其他模型对比

    Table  2.   ${\boldsymbol{f}}$ and theoretical computational costs of each model under various wave bands

    波段/μmMSMGWBSNBFGNB
    $ {M_1} $$ {M_2} $$ {T_0}/{\rm{K}} $$ f $RTE总数$ f $RTE总数$ f $RTE总数带宽/cm−1
    2~2.515530017.3512354.212801813.48005.0
    3.7~4.8510130013.3387130.9217371.04965.0
    3~551019005.5970216.1350424.08006.7
    3~5[21]21075023.17134
    7.7~9.711220016.726124.23701489.92005.36
    8~14101019007.019512.861401213.44285.0
    下载: 导出CSV

    表  3  0~7 km高度的大气热力学状态参数

    Table  3.   Thermodynamic state parameters in the 0−7 km atmosphere

    高度/km压力/Pa温度/Kx(H2O)/10−3x(CO2)/10−4x(CO)/10−7
    6~745829.30258.131.2783.2991.268
    5~652243.17264.361.8843.2961.294
    4~559305.52270.353.0523.2921.304
    3~467127.81276.354.9303.2861.325
    2~375851.90282.357.8633.2761.365
    1~285477.77287.5611.703.2631.410
    0~196056.10292.0616.133.2481.453
    下载: 导出CSV

    表  4  三维算例MSMGWB模型远程红外成像最大计算误差

    Table  4.   Maximum calculation error of MSMGWB model in the 3D case

    波段/μm最大计算误差/%
    含海盐气溶胶环境无气溶胶环境
    2~2.5−8.0~+10.2(L=20 km)−12.2~+11.6(L=70 km)
    3.7~4.8−4.3~+4.8(L=20 km)−1.3~+3.9(L=100 km)
    3~5−7.5~+3.7(L=20 km)−8.3~+0.3(L=100 km)
    7.7~9.7−9.1~+2.5(L=20 km)−13.8~+3.5(L=40 km)
    8~14−7.4~+5.1(L=20 km)−14.8~+3.8(L=100 km)
    下载: 导出CSV
  • [1] HARTMANN J M,LEON R L D,TAINE J. Line-by-line and narrow-band statistical model calculations for H2O[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,1984,32(2): 119-127. doi: 10.1016/0022-4073(84)90076-1
    [2] SOUFIANI A,TAINE J. High temperature gas radiative property parameters of statistical narrow-band model for H2O, CO2 and CO, and correlated-K model for H2O and CO2[J]. International Journal of Heat and Mass Transfer,1997,40(4): 987-991. doi: 10.1016/0017-9310(96)00129-9
    [3] ANDRÉ F. The -distribution method for modeling non-gray absorption in uniform and non-uniform gaseous media[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2016,179: 19-32. doi: 10.1016/j.jqsrt.2016.02.034
    [4] MODEST M F. Narrow-band and full-spectrum k-distributions for radiative heat transfer-correlated-k vs. scaling approximation[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2003,76(1): 69-83. doi: 10.1016/S0022-4073(02)00046-8
    [5] MARIN O,BUCKIUS R O. Wide band correlated-k approach to thermal radiative transport in nonhomogeneous media[J]. Journal of Heat Transfer,1997,119(4): 719-729. doi: 10.1115/1.2824176
    [6] MODEST M F. Radiative heat transfer[M]. 3rd ed. Pittsburgh, US: Academic Press, 2013
    [7] MODEST M F,ZHANG Hongmei. The full-spectrum correlated-k distribution for thermal radiation from molecular gas-particulate mixtures[J]. Journal of Heat Transfer,2002,124(1): 30-38. doi: 10.1115/1.1418697
    [8] RIVIÈRE P,SOUFIANI A,TAINE J. Correlated-k fictitious gas model for H2O infrared radiation in the Voigt regime[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,1995,53(3): 335-346. doi: 10.1016/0022-4073(95)90064-0
    [9] ZHANG Hongmei,MODEST M F. Scalable multi-group full-spectrum correlated-k distributions for radiative transfer calculations[J]. Journal of Heat Transfer,2003,125(3): 454-461. doi: 10.1115/1.1560156
    [10] KHODYKO Y V,KURSKOV A A,ANTIPOROVICH N V. Multigroup method for the calculation of selective IR radiation transfer in nonhomogeneous media[J]. Journal of Applied Spectroscopy,1986,44(3): 284-288. doi: 10.1007/BF00662065
    [11] PIERROT L,RIVIÈRE P,SOUFIANI A,et al. A fictitious-gas-based absorption distribution function global model for radiative transfer in hot gases[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,1999,62(5): 609-624. doi: 10.1016/S0022-4073(98)00124-1
    [12] SOUFIANI A,ANDRÉ F,TAINE J. A fictitious-gas based statistical narrow-band model for IR long-range sensing of H2O at high temperature[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2002,73(2/3/4/5): 339-347.
    [13] WEST R,CRISP D,CHEN L. Mapping transformations for broadband atmospheric radiation calculations[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,1990,43(3): 191-199. doi: 10.1016/0022-4073(90)90051-7
    [14] ANDRÉ F,HOU Longfeng,ROGER M,et al. The multispectral gas radiation modeling: a new theoretical framework based on a multidimensional approach to k-distribution methods[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2014,147: 178-195. doi: 10.1016/j.jqsrt.2014.05.021
    [15] ANDRÉ F,SOLOVJOV V P,WEBB B W,et al. Spectral mapping method based on intervals of comonotonicity for modelling of radiative transfer in non-uniform gaseous media[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2019,229: 33-39. doi: 10.1016/j.jqsrt.2019.02.030
    [16] ZHANG Hua. An optimal approach to overlapping bands with correlated k distribution method and its application to radiative calculations[J]. Journal of Geophysical Research,2003,108(D20): 4641. doi: 10.1029/2002JD003358
    [17] SHI Guangyu,XU Na,WANG Biao,et al. An improved treatment of overlapping absorption bands based on the correlated k distribution model for thermal infrared radiative transfer calculations[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2009,110(8): 435-451. doi: 10.1016/j.jqsrt.2009.01.008
    [18] PIERROT L,SOUFIANI A,TAINE J. Accuracy of narrow-band and global models for radiative transfer in H2O, CO2, and H2O-CO2 mixtures at high temperature[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,1999,62(5): 523-548. doi: 10.1016/S0022-4073(98)00125-3
    [19] HU Haiyang,WANG Qiang. Improved spectral absorption coefficient grouping strategy of wide band k-distribution model used for calculation of infrared remote sensing signal of hot exhaust systems[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2018,213: 17-34. doi: 10.1016/j.jqsrt.2018.04.014
    [20] WANG Qiang,LI Yuxuan,HU Haiyang. Numerical simulation of remote infrared imaging for marine exhaust system using wide-band k-distribution model combined with a new grouping method for spectral sub-intervals[J]. Infrared Physics and Technology,2019,96: 276-290. doi: 10.1016/j.infrared.2018.11.027
    [21] HU Haiyang,LI Yihan,WEI Ziyu,et al. Parameter optimization for MSMGWB model used to calculate infrared remote sensing signals emitted by hot combustion gases of hydrocarbon fuel[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2020,249: 107003.1-107003.17.
    [22] 谈和平, 夏新林, 刘林华. 红外辐射特性与传输的数值计算: 计算热辐射学[M]. 哈尔滨: 哈尔滨工业大学出版社, 2006.
    [23] WISCOMBE W J. Improved Mie scattering algorithms[J]. Applied Optics,1980,19(9): 1505-1509. doi: 10.1364/AO.19.001505
    [24] SOLOVJOV V P,ANDRE F,LEMONNIER D,et al. The rank correlated SLW model of gas radiation in non-uniform media[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2017,197: 26-44. doi: 10.1016/j.jqsrt.2017.01.034
    [25] LAUSSAC S,PIAZZOLA J,TEDESCHI G,et al. Development of a fetch dependent sea-spray source function using aerosol concentration measurements in the North-Western Mediterranean[J]. Atmospheric Environment,2018,193: 177-189. doi: 10.1016/j.atmosenv.2018.09.009
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  26
  • HTML浏览量:  10
  • PDF量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-21
  • 网络出版日期:  2023-09-04

目录

    /

    返回文章
    返回