Effect of circumferential groove casing treatment on performance of counter-rotating compressor under influence of speed matching effect
-
摘要:
采用数值模拟方法,通过分别在对转压气机(counter-rotating compressor, CRC)前后两排转子上进行周向槽机匣处理,研究了其在不同转速匹配方案下的扩稳效果以及对转压气机最先失速级的变化规律。结果表明:当前排转子R1转速高于后排转子R2时,其最先失速级为R1,当R2转速等于或高于R1时,其最先失速级为R2。在对转压气机的最先失速级进行机匣处理可以有效改善所处理转子的叶尖附近流场,包括来流相对气流角的减小、叶尖泄漏流反向轴向动量的减小、叶尖泄漏流与主流交界面位置的后移及叶尖堵塞程度的减弱等,进而提升了其失速裕度。机匣处理一般仅能对所处理转子的流场产生较大影响,但在特殊情况下也会使非处理转子的流场发生明显改变。
Abstract:Numerical simulation method was used to study the stability enhancement effect under different rotational speed matching schemes and the change of first stall stage of counter-rotating compressor (CRC) by performing circumferential groove casing treatment on front and rear rotors of the counter-rotating compressor respectively. The results showed that when the rotational speed of front rotor R1 was higher than that of rear rotor R2, its first stall stage was R1, and when the rotational speed of R2 was equal to or higher than R1, its first stall stage was R2. Casing treatment on first stall stage of the counter-rotating compressor can effectively improve the flow field near blade tip of the treated rotor, including reduction of relative flow angle of inflow, decrease of reverse axial momentum of tip leakage flow, backward movement of interface between tip leakage flow and main flow, and reduction of blade tip blockage, etc., and then improve its stall margin. Generally, the casing treatment can only have a great influence on the flow field of treated rotor, but in special cases, the flow field of non-treated rotor can also be significantly changed.
-
表 1 对转压气机两排转子的主要设计参数
Table 1. Main design parameters of two rotors of the CRC
设计参数 前排转子R1 后排转子R2 叶片数 19 20 进口轮毂比 0.485 0.641 转速/(r/min) 8000 −8000 叶尖弦长/m 0.0832 0.0769 叶尖线速度/(m/s) 167.6 167.6 叶尖间隙/mm 0.5 0.5 表 2 前后排转子的转速匹配方案
Table 2. Speed matching schemes of front and rear rotor
参数 方案1 方案2 方案3 方案4 方案5 方案6 方案7 n1/% 100 100 90 90 100 80 80 n2/% 100 90 100 90 80 100 80 表 3 不同转速匹配时R1和R2的U和ΔWu
Table 3. U and ΔWu of R1 and R2 in different speed matching schemes
转速匹配
方案R1 R2 U ΔWu U ΔWu n1=n2 n1<n2 n1>n2 表 4 R1和R2在不同转速匹配方案下近失速点的叶尖相对负荷
Table 4. Relative blade tip loading of R1 and R2 at near stall point in different speed matching schemes
转速匹配方案 叶尖相对负荷 R1 R2 100%-100% 1 1 100%-80% 0.981 0.814 80%-100% 0.938 1.279 -
[1] YAMADA K, KIKUTA H, IWAKIRI K, et al. An explanation for flow features of spike-type stall inception in an axial compressor rotor[C]//Proceedings of ASME Turbo Expo 2012. Copenhagen, Denmark: ASME, 2012: 2663-2675. [2] WEICHERT S,DAY I. Detailed measurements of spike formation in an axial compressor[J]. Journal of Turbomachinery,2014,136(5): 051006.1-051006.9. . [3] DAY I J. Stall, surge, and 75 years of research[J]. Journal of Turbomachinery,2016,138(1): 011001.1-011001.16. [4] LIN Feng,ZHANG Jingxuan,CHEN Jingyi,et al. Flow structure of short-length-scale disturbance in an axial-flow compressor[J]. Journal of Propulsion and Power,2008,24(6): 1301-1308. doi: 10.2514/1.36525 [5] GOURDAIN N,WLASSOW F,OTTAVY X. Effect of tip clearance dimensions and control of unsteady flows in a multi-stage high-pressure compressor[J]. Journal of Turbomachinery,2012,134(5): 051005.1-051005.13. [6] CAMERON J D,BENNINGTON M A,ROSS M H,et al. The influence of tip clearance momentum flux on stall inception in a high-speed axial compressor[J]. Journal of Turbomachinery,2013,135(5): 051005.1-051005.11. [7] HATHAWAY M D. Passive endwall treatments for enhancing stability[R]. ARL-TR-3878, 2007. [8] ZHOU Xiaoyong,ZHAO Qingjun,XIANG Xiaorong,et al. Investigation of groove casing treatment in a transonic compressor at different speeds with control volume method[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering,2016,230(13): 2392-2408. doi: 10.1177/0954410015625666 [9] 张皓光,安康,吴艳辉,等. 周向槽轴向位置影响机匣处理扩稳能力的机理[J]. 推进技术,2016,37(12): 2296-2302. doi: 10.13675/j.cnki.tjjs.2016.12.012ZHANG Haoguang,AN Kang,WU Yanhui,et al. Mechanism of affecting ability of casing treatment to improve stall margin with varying axial position of circumferential grooves[J]. Journal of Propulsion Technology,2016,37(12): 2296-2302. (in Chinese) doi: 10.13675/j.cnki.tjjs.2016.12.012 [10] SHABBIR A,ADAMCZYK J J. Flow mechanism for stall margin improvement due to circumferential casing grooves on axial compressors[J]. Journal of Turbomachinery,2005,127(4): 708-717. doi: 10.1115/1.2008970 [11] ZHANG Haoguang, TAN Feng, WU Yanhui, et al. Experimental and numerical investigation of effect of center offset degree on compressor stability with circumferential grooved casing treatment[R]. Seoul, South Korea: ASME Turbo Expo: Turbomachinery Technical Conference and Exposition, 2016. [12] 王广,楚武利,陈向艺,等. 轴向偏转型自循环机匣处理对高速压气机扩稳效果的影响机理[J]. 推进技术,2020,41(12): 2691-2699. doi: 10.13675/j.cnki.tjjs.190697WANG Guang,CHU Wuli,CHEN Xiangyi,et al. Influence mechanism of axial deflection self-circulating casing treatment on stability enhancement of high-speed compressor[J]. Journal of Propulsion Technology,2020,41(12): 2691-2699. (in Chinese) doi: 10.13675/j.cnki.tjjs.190697 [13] RABE D C, HAH C. Application of casing circumferential grooves for improved stall margin in a transonic axial compressor[C]//Proceedings of ASME Turbo Expo: Power for Land, Sea, and Air. Amsterdam, The Netherlands: ASME, 2002: 1141-1153. [14] HUANG Xudong,CHEN Haixin,SHI Ke,et al. An analysis of the Circumferential Grooves Casing Treatment for transonic compressor flow[J]. Science China Physics, Mechanics and Astronomy,2010,53(2): 353-359. doi: 10.1007/s11433-010-0123-0 [15] CHEN Haixin,HUANG Xudong,SHI Ke,et al. A computational fluid dynamics study of circumferential groove casing treatment in a transonic axial compressor[J]. Journal of Turbomachinery,2014,136(3): 031003.1-031003.11. [16] WILKE I, KAU H P. A numerical investigation of the influence of casing treatments on the tip leakage flow in a HPC front stage[C]//Proceedings of ASME Turbo Expo: Power for Land, Sea, and Air. Amsterdam, The Netherlands: ASME, 2002: 1155-1165. [17] SAKUMA Y,WATANABE T,HIMENO T,et al. Numerical analysis of flow in a transonic compressor with a single circumferential casing groove: influence of groove location and depth on flow instability[J]. Journal of Turbomachinery,2014,136(3): 031017.1-031017.11. [18] LU X G, CHU W L, ZHU J Q, et al. Mechanism of the interaction between casing treatment and tip leakage flow in a subsonic axial compressor[C]//Proceedings of ASME Turbo Expo: Power for Land, Sea, and Air. Barcelona, Spain: ASME, 2008: 79-90. [19] DU J, LI F, LI J C, et al. A study of performance and flow mechanism of a slot-groove hybrid casing treatment in a low-speed compressor[C]//Proceedings of ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. Montréal, Canada: ASME, 2015: V2C-V44C. [20] LIU Le,LI Jichao,NAN Xi,et al. The stall inceptions in an axial compressor with single circumferential groove casing treatment at different axial locations[J]. Aerospace Science and Technology,2016,59: 145-154. doi: 10.1016/j.ast.2016.10.014 [21] DU Juan,LI Jichao,GAO Lipeng,et al. The impact of casing groove location on stall margin and tip clearance flow in a low-speed axial compressor[J]. Journal of Turbomachinery,2016,138(12): 121007.1-121007.11. [22] SCHIMMING P. Counter rotating fans: an aircraft propulsion for the future?[J]. Journal of Thermal Science,2003,12(2): 97-103. doi: 10.1007/s11630-003-0049-1 [23] SHARMA P B,JAIN Y P,PUNDHIR D S. A study of some factors affecting the performance of a contra-rotating axial compressor stage[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Power and Process Engineering,1988,202(1): 15-21. doi: 10.1243/PIME_PROC_1988_202_003_02 [24] GAO L M, LI X J, XIE J, et al. The effect of speed ratio on the first rotating stall stage in contra-rotating compressor[C]//Proceedings of ASME Turbo Expo. Copenhagen, Denmark: ASME, 2012: 207-216 [25] MAO Xiaochen,LIU Bo,ZHAO Hang. Numerical investigation for the impact of single groove on the stall margin improvement and the unsteadiness of tip leakage flow in a counter-rotating axial flow compressor[J]. Energies,2017,10(8): 1153.1-1153.18. [26] MAO Xiaochen,LIU Bo,ZHAO Hang. Numerical analysis of the circumferential grooves casing treatment in a counter-rotating axial flow compressor[J]. Applied Thermal Engineering,2018,130: 29-39. doi: 10.1016/j.applthermaleng.2017.11.044 [27] MAO Xiaochen,LIU Bo. Investigation of the casing groove location effect for a large tip clearance in a counter-rotating axial flow compressor[J]. Aerospace Science and Technology,2020,105: 106059.1-106059.12. [28] WANG Yangang,CHEN Weixiong,WU Canghai,et al. Effects of tip clearance size on the performance and tip leakage vortex in dual-rows counter-rotating compressor[J]. Proceedings of the Institution of Mechanical Engineers: Part G Journal of Aerospace Engineering,2015,229(11): 1953-1965. doi: 10.1177/0954410014562483 [29] 王昊,薛飞,岳少原,等. 对转压气机变转速比失速特性试验研究[J]. 西北工业大学学报,2021,39(6): 1340-1348. doi: 10.1051/jnwpu/20213961340WANG Hao,XUE Fei,YUE Shaoyuan,et al. Experimental investigation on stall characteristics of contra-rotating compressor with variable speed ratios[J]. Journal of Northwestern Polytechnical University,2021,39(6): 1340-1348. (in Chinese) doi: 10.1051/jnwpu/20213961340 [30] 李晓军,高丽敏,谢建,等. 双级对转压气机的失速机理[J]. 航空动力学报,2013,28(1): 188-194. doi: 10.13224/j.cnki.jasp.2013.01.025LI Xiaojun,GAO Limin,XIE Jian,et al. Rotating stall mechanism of dual-stage contra-rotating compressor[J]. Journal of Aerospace Power,2013,28(1): 188-194. (in Chinese) doi: 10.13224/j.cnki.jasp.2013.01.025 [31] CAMP T R, DAY I J. A study of spike and modal stall phenomena in a low-speed axial compressor[R]. Orlando, US: ASME International Gas Turbine and Aeroengine Congress and Exhibition, 1997. [32] VO H D,TAN C S,GREITZER E M. Criteria for spike initiated rotating stall[J]. Journal of Turbomachinery,2008,130(1): 011023.1-011023.9. [33] CEVIK M,DUC VO H,YU Hong. Casing treatment for desensitization of compressor performance and stability to tip clearance[J]. Journal of Turbomachinery,2016,138(12): 121008.1-121008.16. [34] MAO Xiaochen,LIU Bo,ABDUL R,et al. Numerical investigation into the effects of casing aspiration on the overall performance and flow unsteadiness in a counter-rotating axial flow compressor[J]. Aerospace Science and Technology,2018,78: 671-681. doi: 10.1016/j.ast.2018.05.028 [35] KHALID S A,KHALSA A S,WAITZ I A,et al. Endwall blockage in axial compressors[J]. Journal of Turbomachinery,1999,121(3): 499-509. doi: 10.1115/1.2841344 -