Laminar burning velocity of aqueous ethanol/RP-3 aviation kerosene mixed fuel
-
摘要:
采用定容燃烧实验装置获得初始压力为0.1 MPa、初始温度为450 K、当量比为0.8~1.4工况下乙醇/RP-3航空煤油预混火焰和含水乙醇/RP-3航空煤油预混火焰的层流燃烧速度 (LBVs) ,并分析了乙醇掺混比、乙醇含水量、当量比等因素对混合燃料层流燃烧速度的影响。研究表明:随着乙醇掺混比的增加,乙醇/RP-3航空煤油混合燃料层流燃烧速度增大;当RP-3航空煤油中乙醇掺混比一定时,随着乙醇含水量的增加,含水乙醇/RP-3混合燃料层流燃烧速度减小。由燃烧反应动力学分析可知,混合燃料的层流燃烧速度受动力学、热力学等的综合影响。本研究所获实验数据能够为生物乙醇燃料在航空发动机中的应用提供理论基础和技术支持。
-
关键词:
- 定容燃烧 /
- RP-3航空煤油 /
- 含水乙醇 /
- 层流燃烧速度 (LBV) /
- 燃烧反应动力学
Abstract:The laminar burning velocities (LBVs) of ethanol/RP-3 aviation kerosene and aqueous ethanol/RP-3 aviation kerosene premixed flames under the initial pressure of 0.1 MPa, initial temperature of 450 K and equivalence ratios of 0.8−1.4 were obtained by using a constant volume combustion experimental device, and the effects of ethanol blending ratio, volume fraction of water in ethanol and equivalence ratio on the LBV of the mixed fuel were analyzed. Results showed that the LBV of ethanol/RP-3 mixed fuel increased with the increase of ethanol blending ratio; when the ethanol blending ratio in RP-3 fuel was constant, the LBV of aqueous ethanol/RP-3 mixed fuel decreased with the increase of volume fraction of water in ethanol. From analysis of the combustion reaction kinetics, the LBV of the mixed fuel was affected by the combined effects of kinetics and thermodynamics. The experimental data obtained can provide a theoretical basis and technical support for the application of bio-ethanol fuel in aeroengine.
-
表 1 乙醇/RP-3混合燃料层流燃烧速度影响因素 (pini=0.1 MPa、Tini=450 K、
${\boldsymbol{\phi}}$ =1.1)Table 1. Factors affecting LBV of ethanol/RP-3 mixed fuel (pini=0.1 MPa,Tini=450 K,
${\boldsymbol{\phi}}$ =1.1)工况 λ/
10−3 (J/(m−1·K·s−1))ρu/
(kg/m3)cp/
(J/(kg−1·K))α/
(cm2/s)Le Ea/(J/mol) Ta/K Tad/K E0 32.6 0.8265 1117.87 0.3529 0.8234 214755 25829 2355 E10 32.6 0.8257 1118.50 0.3530 0.8237 212814 25595 2352 E20 32.6 0.8249 1119.13 0.3532 0.8240 210097 25268 2349 E30 32.6 0.8240 1119.92 0.3533 0.8244 208715 25102 2345 E40 32.6 0.8230 1120.76 0.3535 0.8248 206708 24861 2341 E50 32.6 0.8219 1121.64 0.3537 0.8252 205738 24744 2337 表 2 含水乙醇/RP-3混合燃料层流燃烧速度影响因素 (pini=0.1 MPa、Tini=450 K、
${\boldsymbol{\phi}}$ =1.1)Table 2. Factors affecting LBV of aqueous ethanol/RP-3 mixed fuel (pini=0.1 MPa,Tini=450 K,
${\boldsymbol{\phi}}$ =1.1)工况 λ/
10−3 (J/(m−1·K·s−1))ρu/
(kg/m3)cp/
(J/(kg−1·K))α/
(cm2/s)Le Ea/(J/mol) Ta/K Tad/K E20W0 32.6 0.8249 1119.21 0.3532 0.8240 210097 25268 2349 E20W10 32.6 0.8239 1120.63 0.3531 0.8239 210198 25281 2345 E20W20 32.65 0.8230 1122.10 0.3535 0.8248 210734 25345 2341 E20W30 32.65 0.8220 1123.61 0.3535 0.8247 211533 25441 2337 -
[1] 刘宇,汤卓,孙震,等. 小球藻油/RP-3航空煤油混合燃料的层流燃烧特性[J]. 航空动力学报,2019,34(8): 1663-1670.LIU Yu,TANG Zhuo,SUN Zhen,et al. Laminar combustion characteristics of chlorella oil/RP-3 kerosene mixed fuel[J]. Journal of Aerospace Power,2019,34(8): 1663-1670. (in Chinese) [2] 曹运齐,刘云云,胡南江,等. 燃料乙醇的发展现状分析及前景展望[J]. 生物技术通报,2019,35(4): 163-169.CAO Yunqi,LIU Yunyun,HU Nanjiang,et al. Current status and prospects of fuel ethanol production[J]. Biotechnology Bulletin,2019,35(4): 163-169. (in Chinese) [3] 诸逢佳,刘建周. 航空生物燃料的现状及研制前景展望[J]. 能源与环境,2011(4): 19-21.ZHU Fengjia,LIU Jianzhou. Present situation and development prospect of aviation biofuel[J]. Energy and Environment,2011(4): 19-21. (in Chinese) [4] 廖世勇,井明科,程前,等. 乙醇—空气预混层流火焰特性的试验研究[J]. 内燃机学报,2007,25(5): 469-474.LIAO Shiyong,JING Mingke,CHENG Qian,et al. Experimental study on the premixed laminar flames for ethanol-air mixtures[J]. Transactions of CSICE,2007,25(5): 469-474. (in Chinese) [5] 刘阳训. 乙醇-丙酮-空气预混层流燃烧特性研究[D]. 杭州: 浙江大学, 2016.LIU Yangxun. Research on laminar flame characteristics of ethanol-acetone-air mixture[D]. Hangzhou: Zhejiang University, 2016. (in Chinese) [6] 胡洋洋. 乙醇、乙酸乙酯和丙酮混合燃料的层流燃烧特性研究[D]. 杭州: 浙江大学, 2017.HU Yangyang. Research on laminar burning characteristics of ethanol, ethvl acetate, acetone and their blend fuels[D]. Hangzhou: Zhejiang University, 2017. (in Chinese) [7] GÜLDER Ö L. Laminar burning velocities of methanol, ethanol and isooctane-air mixtures[J]. Symposium (International) on Combustion,1982,19(1): 275-281. doi: 10.1016/S0082-0784(82)80198-7 [8] DIRRENBERGER P,GLAUDE P A,BOUNACEUR R,et al. Laminar burning velocity of gasolines with addition of ethanol[J]. Fuel,2014,115: 162-169. doi: 10.1016/j.fuel.2013.07.015 [9] MENG Zhongwei,LIANG Kun,FANG Jia. Laminar burning velocities of iso-octane, toluene, 1-hexene, ethanol and their quaternary blends at elevated temperatures and pressures[J]. Fuel,2019,237: 630-636. doi: 10.1016/j.fuel.2018.10.072 [10] XU Cangsu,LIU Weinan,XIE Cheng,et al. Accelerating laminar flame speed of hydrous ethanol via oxygen-rich combustion[J]. Bio Energy Research,2021,14(2): 634-644. doi: 10.1007/s12155-020-10204-w [11] 张尊华,李格升,沈宇,等. 含水乙醇-空气预混层流燃烧特性的试验[J]. 内燃机学报,2013,31(1): 59-64.ZHANG Zunhua,LI Gesheng,SHEN Yu,et al. Experiment on premixed laminar combustion characteristics for hydrous ethanol-air mixtures[J]. Transactions of CSICE,2013,31(1): 59-64. (in Chinese) [12] 周康泉. 容弹上用定容法测量层流燃烧速度的研究[D]. 杭州: 浙江大学, 2019.ZHOU Kangquan. The research of measuring the laminar buring velocity using CVM in the constant volume burning vessel[D]. Hangzhou: Zhejiang University, 2019. (in Chinese) [13] HU Erjiang,HUANG Zuohua,HE Jiajia,et al. Experimental and numerical study on laminar burning characteristics of premixed methane-hydrogen-air flames[J]. International Journal of Hydrogen Energy,2009,34(11): 4876-4888. doi: 10.1016/j.ijhydene.2009.03.058 [14] HUANG Zuohua,WANG Qian,YU Jinrong,et al. Measurement of laminar burning velocity of dimethyl ether-air premixed mixtures[J]. Fuel,2007,86(15): 2360-2366. doi: 10.1016/j.fuel.2007.01.021 [15] BURKE M P,CHEN Zheng,JU Yiguang,et al. Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames[J]. Combustion and Flame,2009,156(4): 771-779. doi: 10.1016/j.combustflame.2009.01.013 [16] BRADLEY D,HICKS R A,LAWES M,et al. The measurement of laminar burning velocities and markstein numbers for iso-octane-air and iso-octane-n-heptane-air mixtures at elevated temperatures and pressures in an explosion bomb[J]. Combustion and Flame,1998,115(1/2): 126-144. [17] FRANKEL M L,SIVASHINSKY G I. On effects due to thermal expansion and lewis number in spherical flame propagation[J]. Combustion Science and Technology,1983,31(3/4): 131-138. [18] CHEN Z,JU Y. Theoretical analysis of the evolution from ignition kernel to flame ball and planar flame[J]. Combustion Theory and Modelling,2007,11(3): 427-453. doi: 10.1080/13647830600999850 [19] KELLEY A P,LAW C K. Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames[J]. Combustion and Flame,2009,156(9): 1844-1851. doi: 10.1016/j.combustflame.2009.04.004 [20] BRADLEY D,LAWES M,MANSOUR M S. Explosion bomb measurements of ethanol-air laminar gaseous flame characteristics at pressures up to 1.4 MPa[J]. Combustion and Flame,2009,156(7): 1462-1470. doi: 10.1016/j.combustflame.2009.02.007 [21] EGOLFOPOULOS F N,DU D X,LAW C K. A study on ethanol oxidation kinetics in laminar premixed flames, flow reactors, and shock tubes[J]. Symposium (International) on Combustion,1992,24(1): 833-841. doi: 10.1016/S0082-0784(06)80101-3 [22] KUMAR K,SUNG C J,HUI Xin. Laminar flame speeds and extinction limits of conventional and alternative jet fuels[J]. Fuel,2011,90(3): 1004-1011. doi: 10.1016/j.fuel.2010.11.022 [23] WU Yi,MODICA V,YU Xilong,et al. Experimental investigation of laminar flame speed measurement for kerosene fuels: jet A-1, surrogate fuel, and its pure components[J]. Energy & Fuels,2018,32(2): 2332-2343. [24] TANG C L,HUANG Z H,LAW C K. Determination, correlation, and mechanistic interpretation of effects of hydrogen addition on laminar flame speeds of hydrocarbon-air mixtures[J]. Proceedings of the Combustion Institute,2011,33(1): 921-928. doi: 10.1016/j.proci.2010.05.039 [25] LAW C K,SUNG C J. Structure, aerodynamics, and geometry of premixed flamelets[J]. Progress in Energy and Combustion Science,2000,26(4/5/6): 459-505. [26] WU Fujia,KELLEY A P,TANG Chenglong,et al. Measurement and correlation of laminar flame speeds of CO and C2 hydrocarbons with hydrogen addition at atmospheric and elevated pressures[J]. International Journal of Hydrogen Energy,2011,36(20): 13171-13180. doi: 10.1016/j.ijhydene.2011.07.021 -