留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含水乙醇/RP-3航空煤油混合燃料的层流燃烧速度

刘宇 周博 谷午 饶大为 马洪安 曾文

刘宇, 周博, 谷午, 等. 含水乙醇/RP-3航空煤油混合燃料的层流燃烧速度[J]. 航空动力学报, 2024, 39(1):20220150 doi: 10.13224/j.cnki.jasp.20220150
引用本文: 刘宇, 周博, 谷午, 等. 含水乙醇/RP-3航空煤油混合燃料的层流燃烧速度[J]. 航空动力学报, 2024, 39(1):20220150 doi: 10.13224/j.cnki.jasp.20220150
LIU Yu, ZHOU Bo, GU Wu, et al. Laminar burning velocity of aqueous ethanol/RP-3 aviation kerosene mixed fuel[J]. Journal of Aerospace Power, 2024, 39(1):20220150 doi: 10.13224/j.cnki.jasp.20220150
Citation: LIU Yu, ZHOU Bo, GU Wu, et al. Laminar burning velocity of aqueous ethanol/RP-3 aviation kerosene mixed fuel[J]. Journal of Aerospace Power, 2024, 39(1):20220150 doi: 10.13224/j.cnki.jasp.20220150

含水乙醇/RP-3航空煤油混合燃料的层流燃烧速度

doi: 10.13224/j.cnki.jasp.20220150
基金项目: 国家自然科学基金(51606129); 辽宁省教育厅项目(LJKZ0181)
详细信息
    作者简介:

    刘宇(1983-),男,副教授,博士,主要从事航空燃料燃烧特性实验及燃烧反应机理研究。E-mail:liuyu_201409@163.com

    通讯作者:

    曾文(1977-),男,教授,博士,主要从事航空发动机燃烧过程与排放物生成的数值研究。E-mail:zengwen928@sohu.com

  • 中图分类号: V231;TK401

Laminar burning velocity of aqueous ethanol/RP-3 aviation kerosene mixed fuel

  • 摘要:

    采用定容燃烧实验装置获得初始压力为0.1 MPa、初始温度为450 K、当量比为0.8~1.4工况下乙醇/RP-3航空煤油预混火焰和含水乙醇/RP-3航空煤油预混火焰的层流燃烧速度 (LBVs) ,并分析了乙醇掺混比、乙醇含水量、当量比等因素对混合燃料层流燃烧速度的影响。研究表明:随着乙醇掺混比的增加,乙醇/RP-3航空煤油混合燃料层流燃烧速度增大;当RP-3航空煤油中乙醇掺混比一定时,随着乙醇含水量的增加,含水乙醇/RP-3混合燃料层流燃烧速度减小。由燃烧反应动力学分析可知,混合燃料的层流燃烧速度受动力学、热力学等的综合影响。本研究所获实验数据能够为生物乙醇燃料在航空发动机中的应用提供理论基础和技术支持。

     

  • 图 1  定容燃烧反应装置图

    Figure 1.  Schematic of constant volume combustion experimental setup

    图 2  定容燃烧弹截面图

    Figure 2.  Cross-section view of the constant volume chamber

    图 3  乙醇/RP-3航空煤油混合燃料火焰发展特性图片(pini=0.1 MPa、Tini=450 K)

    Figure 3.  Flame propagation images of ethanol/RP-3 aviation kerosene mixed fuel (pini=0.1 MPa,Tini=450 K)

    图 4  含水乙醇/RP-3航空煤油混合燃料火焰发展特性图片(pini=0.1 MPa、Tini=450 K)

    Figure 4.  Flame propagation images of aqueous ethanol/RP-3 aviation kerosene mixed fuel (pini=0.1 MPa,Tini=450 K)

    图 5  火焰半径随时间的变化趋势(pini=0.1 MPa、Tini=450 K、ϕ=1.1)

    Figure 5.  Change of flame radius versus elapsing time (pini=0.1 MPa,Tini=450 K,ϕ=1.1)

    图 6  火焰传播速度随火焰半径的变化趋势(pini=0.1 MPa、Tini=450 K、ϕ=1.1)

    Figure 6.  Change of stretched flame speed versus flame radius (pini=0.1 MPa,Tini=450 K,ϕ=1.1)

    图 7  拉伸火焰传播速度随火焰拉伸率的变化趋势(pini=0.1 MPa、Tini=450 K、ϕ=1.1)

    Figure 7.  Change of stretched flame speed versus flame stretch rate (pini=0.1 MPa,Tini=450 K,ϕ=1.1)

    图 8  层流燃烧速度随当量比的变化趋势(pini=0.1 MPa、Tini=450 K)

    Figure 8.  Change of LBV versus equivalent ratio(pini=0.1 MPa, Tini=450 K)

    图 9  层流燃烧速度影响参数的变化趋势

    Figure 9.  Change of the factors related to LBV

    图 10  混合燃料反应路径

    Figure 10.  Reaction path of the mixed fuel

    图 11  活性自由基的摩尔分数(pini=0.1 MPa、Tini=450 K)

    Figure 11.  Mole fraction of active radical (pini=0.1 MPa,Tini=450 K)

    表  1  乙醇/RP-3混合燃料层流燃烧速度影响因素 (pini=0.1 MPa、Tini=450 K、 ${\boldsymbol{\phi}}$=1.1)

    Table  1.   Factors affecting LBV of ethanol/RP-3 mixed fuel (pini=0.1 MPa,Tini=450 K, ${\boldsymbol{\phi}}$=1.1)

    工况λ/
    10−3 (J/(m−1·K·s−1))
    ρu/
    (kg/m3
    cp/
    (J/(kg−1·K))
    α/
    (cm2/s)
    LeEa/(J/mol)Ta/KTad/K
    E032.60.82651117.870.35290.8234214755258292355
    E1032.60.82571118.500.35300.8237212814255952352
    E2032.60.82491119.130.35320.8240210097252682349
    E3032.60.82401119.920.35330.8244208715251022345
    E4032.60.82301120.760.35350.8248206708248612341
    E5032.60.82191121.640.35370.8252205738247442337
    下载: 导出CSV

    表  2  含水乙醇/RP-3混合燃料层流燃烧速度影响因素 (pini=0.1 MPa、Tini=450 K、 ${\boldsymbol{\phi}}$=1.1)

    Table  2.   Factors affecting LBV of aqueous ethanol/RP-3 mixed fuel (pini=0.1 MPa,Tini=450 K, ${\boldsymbol{\phi}}$=1.1)

    工况λ/
    10−3 (J/(m−1·K·s−1))
    ρu/
    (kg/m3
    cp/
    (J/(kg−1·K))
    α/
    (cm2/s)
    LeEa/(J/mol)Ta/KTad/K
    E20W032.60.82491119.210.35320.8240210097252682349
    E20W1032.60.82391120.630.35310.8239210198252812345
    E20W2032.650.82301122.100.35350.8248210734253452341
    E20W3032.650.82201123.610.35350.8247211533254412337
    下载: 导出CSV
  • [1] 刘宇,汤卓,孙震,等. 小球藻油/RP-3航空煤油混合燃料的层流燃烧特性[J]. 航空动力学报,2019,34(8): 1663-1670.

    LIU Yu,TANG Zhuo,SUN Zhen,et al. Laminar combustion characteristics of chlorella oil/RP-3 kerosene mixed fuel[J]. Journal of Aerospace Power,2019,34(8): 1663-1670. (in Chinese)
    [2] 曹运齐,刘云云,胡南江,等. 燃料乙醇的发展现状分析及前景展望[J]. 生物技术通报,2019,35(4): 163-169.

    CAO Yunqi,LIU Yunyun,HU Nanjiang,et al. Current status and prospects of fuel ethanol production[J]. Biotechnology Bulletin,2019,35(4): 163-169. (in Chinese)
    [3] 诸逢佳,刘建周. 航空生物燃料的现状及研制前景展望[J]. 能源与环境,2011(4): 19-21.

    ZHU Fengjia,LIU Jianzhou. Present situation and development prospect of aviation biofuel[J]. Energy and Environment,2011(4): 19-21. (in Chinese)
    [4] 廖世勇,井明科,程前,等. 乙醇—空气预混层流火焰特性的试验研究[J]. 内燃机学报,2007,25(5): 469-474.

    LIAO Shiyong,JING Mingke,CHENG Qian,et al. Experimental study on the premixed laminar flames for ethanol-air mixtures[J]. Transactions of CSICE,2007,25(5): 469-474. (in Chinese)
    [5] 刘阳训. 乙醇-丙酮-空气预混层流燃烧特性研究[D]. 杭州: 浙江大学, 2016.

    LIU Yangxun. Research on laminar flame characteristics of ethanol-acetone-air mixture[D]. Hangzhou: Zhejiang University, 2016. (in Chinese)
    [6] 胡洋洋. 乙醇、乙酸乙酯和丙酮混合燃料的层流燃烧特性研究[D]. 杭州: 浙江大学, 2017.

    HU Yangyang. Research on laminar burning characteristics of ethanol, ethvl acetate, acetone and their blend fuels[D]. Hangzhou: Zhejiang University, 2017. (in Chinese)
    [7] GÜLDER Ö L. Laminar burning velocities of methanol, ethanol and isooctane-air mixtures[J]. Symposium (International) on Combustion,1982,19(1): 275-281. doi: 10.1016/S0082-0784(82)80198-7
    [8] DIRRENBERGER P,GLAUDE P A,BOUNACEUR R,et al. Laminar burning velocity of gasolines with addition of ethanol[J]. Fuel,2014,115: 162-169. doi: 10.1016/j.fuel.2013.07.015
    [9] MENG Zhongwei,LIANG Kun,FANG Jia. Laminar burning velocities of iso-octane, toluene, 1-hexene, ethanol and their quaternary blends at elevated temperatures and pressures[J]. Fuel,2019,237: 630-636. doi: 10.1016/j.fuel.2018.10.072
    [10] XU Cangsu,LIU Weinan,XIE Cheng,et al. Accelerating laminar flame speed of hydrous ethanol via oxygen-rich combustion[J]. Bio Energy Research,2021,14(2): 634-644. doi: 10.1007/s12155-020-10204-w
    [11] 张尊华,李格升,沈宇,等. 含水乙醇-空气预混层流燃烧特性的试验[J]. 内燃机学报,2013,31(1): 59-64.

    ZHANG Zunhua,LI Gesheng,SHEN Yu,et al. Experiment on premixed laminar combustion characteristics for hydrous ethanol-air mixtures[J]. Transactions of CSICE,2013,31(1): 59-64. (in Chinese)
    [12] 周康泉. 容弹上用定容法测量层流燃烧速度的研究[D]. 杭州: 浙江大学, 2019.

    ZHOU Kangquan. The research of measuring the laminar buring velocity using CVM in the constant volume burning vessel[D]. Hangzhou: Zhejiang University, 2019. (in Chinese)
    [13] HU Erjiang,HUANG Zuohua,HE Jiajia,et al. Experimental and numerical study on laminar burning characteristics of premixed methane-hydrogen-air flames[J]. International Journal of Hydrogen Energy,2009,34(11): 4876-4888. doi: 10.1016/j.ijhydene.2009.03.058
    [14] HUANG Zuohua,WANG Qian,YU Jinrong,et al. Measurement of laminar burning velocity of dimethyl ether-air premixed mixtures[J]. Fuel,2007,86(15): 2360-2366. doi: 10.1016/j.fuel.2007.01.021
    [15] BURKE M P,CHEN Zheng,JU Yiguang,et al. Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames[J]. Combustion and Flame,2009,156(4): 771-779. doi: 10.1016/j.combustflame.2009.01.013
    [16] BRADLEY D,HICKS R A,LAWES M,et al. The measurement of laminar burning velocities and markstein numbers for iso-octane-air and iso-octane-n-heptane-air mixtures at elevated temperatures and pressures in an explosion bomb[J]. Combustion and Flame,1998,115(1/2): 126-144.
    [17] FRANKEL M L,SIVASHINSKY G I. On effects due to thermal expansion and lewis number in spherical flame propagation[J]. Combustion Science and Technology,1983,31(3/4): 131-138.
    [18] CHEN Z,JU Y. Theoretical analysis of the evolution from ignition kernel to flame ball and planar flame[J]. Combustion Theory and Modelling,2007,11(3): 427-453. doi: 10.1080/13647830600999850
    [19] KELLEY A P,LAW C K. Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames[J]. Combustion and Flame,2009,156(9): 1844-1851. doi: 10.1016/j.combustflame.2009.04.004
    [20] BRADLEY D,LAWES M,MANSOUR M S. Explosion bomb measurements of ethanol-air laminar gaseous flame characteristics at pressures up to 1.4 MPa[J]. Combustion and Flame,2009,156(7): 1462-1470. doi: 10.1016/j.combustflame.2009.02.007
    [21] EGOLFOPOULOS F N,DU D X,LAW C K. A study on ethanol oxidation kinetics in laminar premixed flames, flow reactors, and shock tubes[J]. Symposium (International) on Combustion,1992,24(1): 833-841. doi: 10.1016/S0082-0784(06)80101-3
    [22] KUMAR K,SUNG C J,HUI Xin. Laminar flame speeds and extinction limits of conventional and alternative jet fuels[J]. Fuel,2011,90(3): 1004-1011. doi: 10.1016/j.fuel.2010.11.022
    [23] WU Yi,MODICA V,YU Xilong,et al. Experimental investigation of laminar flame speed measurement for kerosene fuels: jet A-1, surrogate fuel, and its pure components[J]. Energy & Fuels,2018,32(2): 2332-2343.
    [24] TANG C L,HUANG Z H,LAW C K. Determination, correlation, and mechanistic interpretation of effects of hydrogen addition on laminar flame speeds of hydrocarbon-air mixtures[J]. Proceedings of the Combustion Institute,2011,33(1): 921-928. doi: 10.1016/j.proci.2010.05.039
    [25] LAW C K,SUNG C J. Structure, aerodynamics, and geometry of premixed flamelets[J]. Progress in Energy and Combustion Science,2000,26(4/5/6): 459-505.
    [26] WU Fujia,KELLEY A P,TANG Chenglong,et al. Measurement and correlation of laminar flame speeds of CO and C2 hydrocarbons with hydrogen addition at atmospheric and elevated pressures[J]. International Journal of Hydrogen Energy,2011,36(20): 13171-13180. doi: 10.1016/j.ijhydene.2011.07.021
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  41
  • HTML浏览量:  20
  • PDF量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-23
  • 网络出版日期:  2023-09-20

目录

    /

    返回文章
    返回