留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正庚烷/甲烷混合燃烧特性数值分析

石云姣 孙继昊 徐宏昊 庞历瑶 赵宁波 郑洪涛

石云姣, 孙继昊, 徐宏昊, 等. 正庚烷/甲烷混合燃烧特性数值分析[J]. 航空动力学报, 2024, 39(2):20220152 doi: 10.13224/j.cnki.jasp.20220152
引用本文: 石云姣, 孙继昊, 徐宏昊, 等. 正庚烷/甲烷混合燃烧特性数值分析[J]. 航空动力学报, 2024, 39(2):20220152 doi: 10.13224/j.cnki.jasp.20220152
SHI Yunjiao, SUN Jihao, XU Honghao, et al. Numerical analysis on combustion characteristics of n-heptane co-firing with methane[J]. Journal of Aerospace Power, 2024, 39(2):20220152 doi: 10.13224/j.cnki.jasp.20220152
Citation: SHI Yunjiao, SUN Jihao, XU Honghao, et al. Numerical analysis on combustion characteristics of n-heptane co-firing with methane[J]. Journal of Aerospace Power, 2024, 39(2):20220152 doi: 10.13224/j.cnki.jasp.20220152

正庚烷/甲烷混合燃烧特性数值分析

doi: 10.13224/j.cnki.jasp.20220152
基金项目: 国家科技重大专项(2017-Ⅲ-0006-0031)
详细信息
    作者简介:

    石云姣(1999-),女,博士生,主要从事燃气轮机燃烧理论与技术研究

    通讯作者:

    赵宁波(1987-),男,教授、博士生导师,博士,主要从事燃气轮机燃烧理论与技术研究。E-mail:zhaoningbo314@hrbeu.edu.cn

  • 中图分类号: V231.2+5

Numerical analysis on combustion characteristics of n-heptane co-firing with methane

  • 摘要:

    针对燃气轮机的双燃料混合燃烧问题,采用直接关系图法对NUI(National University of Ireland)机理进行简化(含204组分,902步反应),在此基础上数值研究了甲烷质量分数和体积分数对正庚烷/甲烷混合燃烧特性的影响。结果表明:提高甲烷体积分数会使混合燃料的着火延迟时间非线性增加,层流火焰速度、绝热火焰温度、一氧化碳排放下降;当甲烷体积分数超过70%时,混合燃料的层流火焰速度和着火延迟时间对甲烷体积分数较为敏感。此外,对于采用正庚烷/甲烷的环形燃烧室,在保持混合燃料热值不变的条件下,两种燃料的火焰锋面位置基本相同,且随着甲烷质量分数的升高,火焰长度和托举高度逐渐增加,燃烧效率、总压损失、一氧化碳和氮氧化物排放逐渐下降;当甲烷质量分数低于30%时,火焰呈“V”型,高于30%时火焰呈“M”型。

     

  • 图 1  正庚烷详细化学反应机理对比结果

    Figure 1.  Comparsion between the detailed chemical reaction mechanism of n-heptane

    图 2  层流火焰速度验证结果(p=1.013×105 Pa, T =393 K)

    Figure 2.  Validation results of laminar flame speeds (p=1.013×105 Pa, T =393 K)

    图 3  着火延迟时间验证结果 (p=1.013×106 Pa,$ \phi $=1.0)

    Figure 3.  Validation results of ignition delays (p=1.013×106 Pa,$ \phi $=1.0)

    图 4  关键组分验证结果 (正庚烷体积分数为50%,甲烷体积分数为50%,p=1.013×106 Pa,T=1000 K)

    Figure 4.  Validation results of some important intermediate species (n-heptane volume fraction of 50%, methane volume fraction of 50%,p=1.013×106 Pa,T=1000 K)

    图 5  当量比、点火温度、甲烷体积分数对正庚烷/甲烷/空气着火延迟时间的影响(p=1.013×106 Pa)

    Figure 5.  Influences of equivalence ratio, ignition temperature, methane volume fraction in n-heptane/methane mixtures on ignition delays of n-heptane/methane/air (p=1.013×106 Pa)

    图 6  甲烷体积分数对正庚烷/甲烷/空气层流火焰速度的影响

    Figure 6.  Influence of methane volume fraction in the fuel on the laminar flame speeds of n-heptane/methane/air mixture

    图 7  甲烷体积分数对正庚烷/甲烷绝热火焰温度及CO排放的影响

    Figure 7.  Influence of methane volume fraction in the fuel on ambient flame temperature and CO emission

    图 8  环形燃烧室示意图

    Figure 8.  Schematic of the annual combustor

    图 9  网格独立性验证结果

    Figure 9.  Results of mesh independence verification

    图 10  数值模拟结果与实验值[28]对比

    Figure 10.  Numerical simulation results compared with experimental data[28]

    图 11  甲烷质量分数对温度场分布的影响

    Figure 11.  Influence of methane mass fractions on temperature

    图 12  甲烷质量分数对释热率分布的影响

    Figure 12.  Influence of methane mass fraction on heat release rate

    图 13  正庚烷、甲烷质量分数分布

    Figure 13.  Mass fractions of n-heptane and methane

    图 14  正庚烷、甲烷质量分数梯度

    Figure 14.  Mass fraction gradient of n-heptane and methane

    表  1  燃料组成及燃料质量流量

    Table  1.   Composition and mass flow rate of different fuels

    组合编号质量分数质量流量/(kg/s)
    正庚烷甲烷
    1100.0301
    20.70.30.0291
    30.50.50.0285
    40.30.70.0279
    5010.0270
    下载: 导出CSV

    表  2  甲烷质量分数对燃烧室性能和排放的影响

    Table  2.   Influence of methane mass fraction on combustor performances and emission

    甲烷质量分数效率/%总压损失/%出口温度分布系数CO排放/(mg/m3NOx排放/(mg/m3
    099.917.750.2347.28302.30
    0.399.707.740.2528.28227.86
    0.599.657.720.2328.27189.32
    0.799.187.710.2423.15151.53
    198.897.700.2418.12105.09
    下载: 导出CSV
  • [1] 杨强. 中小型双燃料燃气轮机发展现状及应用前景分析[J]. 舰船科学技术,2019,41(3): 1-8.

    YANG Qiang. Development and application of small and medium-sized dual-fuel gas turbine[J]. Ship Science and Technology,2019,41(3): 1-8. (in Chinese)
    [2] 尉曙明,索建秦. 航空衍生工业燃气轮机双燃料贫燃预混低污染燃烧技术[J]. 航空动力学报,2015,30(9): 2049-2057.

    WEI Shuming,SUO Jianqin. Aero-derivative industrial gas turbine dual fuel lean premixed low emission combustion technology[J]. Journal of Aerospace Power,2015,30(9): 2049-2057. (in Chinese)
    [3] 刘明依,王冰晓,冉军辉,等. 燃气轮机双燃料切换控制策略研究[J]. 热能动力工程,2020,35(3): 45-50. doi: 10.16146/j.cnki.rndlgc.2020.03.006

    LIU Mingyi,WANG Bingxiao,RAN Junhui,et al. Research on duel fuel switching control strategies for the turbine[J]. Journal of Engineering for Thermal Energy and Power,2020,35(3): 45-50. (in Chinese) doi: 10.16146/j.cnki.rndlgc.2020.03.006
    [4] LIANG Junjie,ZHANG Zunhua,LI Gesheng,et al. Experimental and kinetic studies of ignition processes of the methane-n-heptane mixtures[J]. Fuel,2019,235: 522-529. doi: 10.1016/j.fuel.2018.08.041
    [5] GONG Zhen,FENG Liyan,WEI Lai,et al. Shock tube and kinetic study on ignition characteristics of lean methane/n-heptane mixtures at low and elevated pressures[J]. Energy,2020,197: 117242. doi: 10.1016/j.energy.2020.117242
    [6] LI Gesheng,LIANG Junjie,ZHANG Zunhua,et al. Experimental investigation on laminar burning velocities and markstein lengths of premixed methane- n-heptane-air mixtures[J]. Energy & Fuels,2015,29(7): 4549-4556.
    [7] LI Jingrui,LIU Haifeng,LIU Xinlei,et al. Development of a simplified n-heptane/methane model for high-pressure direct-injection natural gas marine engines[J]. Frontiers in Energy,2021,15(2): 405-420. doi: 10.1007/s11708-021-0718-3
    [8] LI Jingrui,LIU Xinlei,LIU Haifeng,et al. Kinetic study of the ignition process of methane/n-heptane fuel blends under high-pressure direct-injection natural gas engine conditions[J]. Energy & Fuels,2020,34(11): 14796-14813.
    [9] SORIANO B S,RICHARDSON E S. Investigation of flame propagation in autoignitive blends of n-heptane and methane fuel[J]. Combustion Theory and Modelling,2019,23(6): 1054-1070. doi: 10.1080/13647830.2019.1614228
    [10] ZHANG Peng,RAN Jingyu,QIN Changlei,et al. Effects of methane addition on exhaust gas emissions and combustion efficiency of the premixed n-heptane/air combustion[J]. Energy & Fuels,2018,32(3): 3900-3907.
    [11] KACZMAREK D,ATAKAN B,KASPER T. Investigation of the partial oxidation of methane/n-heptane-mixtures and the interaction of methane and n-heptane under ultra-rich conditions[J]. Combustion and Flame,2019,205: 345-357. doi: 10.1016/j.combustflame.2019.04.005
    [12] 宋超杰,李格升,梁俊杰,等. 甲烷氛围下正庚烷低温氧化特性[J]. 内燃机学报,2021,39(5): 385-394.

    SONG Chaojie,LI Gesheng,LIANG Junjie,et al. Low temperature oxidation characteristics of n-heptane in methane atmosphere[J]. Transactions of CSICE,2021,39(5): 385-394. (in Chinese)
    [13] CURRAN H J,GAFFURI P,PITZ W J,et al. A comprehensive modeling study of n-heptane oxidation[J]. Combustion and Flame,1998,114(1/2): 149-177.
    [14] ZHANG Kuiwen,BANYON C,BUGLER J,et al. An updated experimental and kinetic modeling study of n-heptane oxidation[J]. Combustion and Flame,2016,172: 116-135. doi: 10.1016/j.combustflame.2016.06.028
    [15] WESTBROOK C K,PITZ W J,HERBINET O,et al. A comprehensive detailed chemical kinetic reaction mechanism for combustion of n-alkane hydrocarbons from n-octane to n-hexadecane[J]. Combustion and Flame,2009,156(1): 181-199. doi: 10.1016/j.combustflame.2008.07.014
    [16] ATEF N,KUKKADAPU G,MOHAMED S Y,et al. A comprehensive iso-octane combustion model with improved thermochemistry and chemical kinetics[J]. Combustion and Flame,2017,178: 111-134. doi: 10.1016/j.combustflame.2016.12.029
    [17] MATSSON J E. An introduction to ANSYS Fluent 2021[M]. Mission, US: SDC Publications, 2021.
    [18] SIDEY J A M,MASTORAKOS E. Stabilisation of swirling dual-fuel flames[J]. Experimental Thermal and Fluid Science,2018,95: 65-72. doi: 10.1016/j.expthermflusci.2018.02.007
    [19] EVANS M J,SIDEY J A M,YE J,et al. Temperature and reaction zone imaging in turbulent swirling dual-fuel flames[J]. Proceedings of the Combustion Institute,2019,37(2): 2159-2166. doi: 10.1016/j.proci.2018.07.076
    [20] 杨强,李雅军,从文峰,等. 燃气轮机燃烧室双燃料混合燃烧数值模拟[J]. 动力工程学报,2021,41(8): 632-639.

    YANG Qiang,LI Yajun,CONG Wenfeng,et al. Numerical simulation of dual fuel mixed combustion in gas turbine combustor[J]. Journal of Chinese Society of Power Engineering,2021,41(8): 632-639. (in Chinese)
    [21] AGWU O,RUNYON J,GOKTEPE B,et al. Visualisation and performance evaluation of biodiesel/methane co-combustion in a swirl-stabilised gas turbine combustor[J]. Fuel,2020,277: 118172. doi: 10.1016/j.fuel.2020.118172
    [22] 刘瑞同. 双燃料燃气轮机的燃料切换与混烧[J]. 燃气轮机技术,2001,14(1): 54-55. doi: 10.3969/j.issn.1009-2889.2001.01.009

    LIU Ruitong. Fuel switching and mixed combustion of dual-fuel gas turbine[J]. Gas Turbine Technology,2001,14(1): 54-55. (in Chinese) doi: 10.3969/j.issn.1009-2889.2001.01.009
    [23] CHONG C T,CHIONG M C,NG J H,et al. Dual-fuel operation of biodiesel and natural gas in a model gas turbine combustor[J]. Energy & Fuels,2020,34(3): 3788-3796.
    [24] PRIELER R,DEMUTH M,SPOLJARIC D,et al. Numerical investigation of the steady flamelet approach under different combustion environments[J]. Fuel,2015,140: 731-743. doi: 10.1016/j.fuel.2014.10.006
    [25] MAYR B,PRIELER R,DEMUTH M,et al. The usability and limits of the steady flamelet approach in oxy-fuel combustions[J]. Energy,2015,90: 1478-1489. doi: 10.1016/j.energy.2015.06.103
    [26] PROCH F,KEMPF A M. Modeling heat loss effects in the large eddy simulation of a model gas turbine combustor with premixed flamelet generated manifolds[J]. Proceedings of the Combustion Institute,2015,35(3): 3337-3345. doi: 10.1016/j.proci.2014.07.036
    [27] SEE Y C,IHME M. Large eddy simulation of a partially-premixed gas turbine model combustor[J]. Proceedings of the Combustion Institute,2015,35(2): 1225-1234. doi: 10.1016/j.proci.2014.08.006
    [28] 徐榕. 湍流燃烧模型在航空发动机燃烧室中的应用研究[D]. 南京: 南京航空航天大学, 2014.

    XU Rong. Research on application of turbulent combustion models for combustion flows of aero-engine combustors[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014. (in Chinese)
  • 加载中
图(14) / 表(2)
计量
  • 文章访问数:  121
  • HTML浏览量:  97
  • PDF量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-24
  • 网络出版日期:  2023-09-28

目录

    /

    返回文章
    返回