留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

密度比对弯扭导叶扇形孔气膜冷却效率的影响

王晓增 阚瑞 刘存良

王晓增, 阚瑞, 刘存良. 密度比对弯扭导叶扇形孔气膜冷却效率的影响[J]. 航空动力学报, 2023, 38(1):70-78 doi: 10.13224/j.cnki.jasp.20220154
引用本文: 王晓增, 阚瑞, 刘存良. 密度比对弯扭导叶扇形孔气膜冷却效率的影响[J]. 航空动力学报, 2023, 38(1):70-78 doi: 10.13224/j.cnki.jasp.20220154
WANG Xiaozeng, KAN Rui, LIU Cunliang. Effect of density ratio on film cooling characteristics of a bowed and twisted turbine vane with fan-shaped film holes[J]. Journal of Aerospace Power, 2023, 38(1):70-78 doi: 10.13224/j.cnki.jasp.20220154
Citation: WANG Xiaozeng, KAN Rui, LIU Cunliang. Effect of density ratio on film cooling characteristics of a bowed and twisted turbine vane with fan-shaped film holes[J]. Journal of Aerospace Power, 2023, 38(1):70-78 doi: 10.13224/j.cnki.jasp.20220154

密度比对弯扭导叶扇形孔气膜冷却效率的影响

doi: 10.13224/j.cnki.jasp.20220154
详细信息
    作者简介:

    王晓增(1984-),男,高级工程师,硕士,主要从事叶轮机械气动热力学研究

  • 中图分类号: V231.1

Effect of density ratio on film cooling characteristics of a bowed and twisted turbine vane with fan-shaped film holes

  • 摘要:

    针对带扇形气膜孔的三维弯扭的高压涡轮一级导叶,采用压力敏感漆传质类比测量技术,研究了不同密度比与质量流量比下叶片的全表面气膜冷却效率分布特性。结果表明:叶片气膜冷却效率随密度比和质量流量比的增加而增大,冷气密度比从1.0增加到2.0时,叶片展向平均气膜冷却效率提升6%~32%。气膜冷却效率随密度比呈现非线性的变化,冷气密度比从1.0增加到1.5时,气膜冷却效率的增幅较小,密度比从1.5增加到2.0时,气膜冷却效率的增幅较大。

     

  • 图 1  试验风洞系统

    Figure 1.  Experimental wind tunnel system

    图 2  叶栅通道示意图(单位:mm)

    Figure 2.  Schematic of vane cascade (unit:mm)

    图 3  静压测压孔位置

    Figure 3.  Static pressure hole positions

    图 4  气膜孔布局示意图

    Figure 4.  Schematic of film hole position

    图 5  试验叶片几何结构

    Figure 5.  Geometric structure of experimental vane

    图 6  后倾扇形孔示意图

    Figure 6.  Schematic of laid-back-fan-shaped hole

    图 7  PSP测量技术标定曲线

    Figure 7.  Calibration curves for PSP measurement technique

    图 8  导叶中截面压力系数分布

    Figure 8.  Pressure coefficient distribution in midspan of vane

    图 9  流量比对叶片气膜冷却趋势的影响

    Figure 9.  Effect of mass flow rate ratio on film cooling effectiveness of vane

    图 10  流量比为8.92%工况下气膜冷却效率随密度比的变化

    Figure 10.  Film cooling effectiveness distributions at mass flow rate ratio of 8.92% under different density ratios

    图 11  弯扭叶栅流线分布

    Figure 11.  Streamline distribution in twisted cascade

    图 12  流量比为10.45%工况下气膜冷却效率随密度比的变化

    Figure 12.  Film cooling effectiveness distributions at mass flow rate ratio of 10.45% under different density ratios

    图 13  密度比对展向平均气膜冷却效率的影响

    Figure 13.  Effects of density ratio on spanwise averaged film cooling effectiveness distributions

    表  1  叶栅通道参数

    Table  1.   Vane cascade parameters

    参数数值
    弦长/mm203.5
    栅距/mm168
    进口角/(°)90
    出口角/(°)17.35
    下载: 导出CSV

    表  2  试验工况

    Table  2.   Experimental test conditions

    参数数值
    雷诺数120000
    密度比1, 1.5, 2.0
    湍流度/%12
    流量比/%8.92, 10.45
    下载: 导出CSV

    表  3  不同气膜冷却效率情况下的不确定度

    Table  3.   Uncertainty under different film cooling effectiveness conditions

    $ \eta $$ (\Delta \eta /\eta ) $/%
    0.0114.11
    0.056.24
    0.14.36
    0.32.38
    0.51.73
    0.71.36
    0.891.12
    下载: 导出CSV
  • [1] BUNKER R S. Evolution of turbine cooling[R]. ASME GT 2017-63205, 2017.
    [2] GOLDSTEIN R J,ECKERT E R. Film cooling with injection through holes: adiabatic wall temperature downstream of a circular hole[J]. ASME Journal of Engineering for Power,1968,90(2): 384-395.
    [3] ERIKSEN V L. Filming cooling effectiveness and heat transfer with injection through holes [R]. NASA-CR-72991, 1971.
    [4] LEYLEK J H,ZERKLE R D. Discrete-jet film cooling: a comparison of computational results with experiments[J]. Journal of Turbomachinery,1994,116(3): 358-368. doi: 10.1115/1.2929422
    [5] YUEN C H N,MARTINEZ-BOTAS R F. Film cooling characteristics of rows of round holes at various streamwise angles in a crossflow: Part I effectiveness[J]. International Journal of Heat and Mass Transfer,2003,46(2): 221-235. doi: 10.1016/S0017-9310(02)00274-0
    [6] GOLDSTEIN R J. Film cooling[J]. Advances in Heat Transfer,1971,7(1): 321-379.
    [7] ZHU H R,XU D C,GUO T,et al. Effects of film cooling hole shape on heat transfer[J]. Heat Transfer Asian Research,2004,33(2): 73-80. doi: 10.1002/htj.20005
    [8] COLBAN W, GRATTON A, THOLE K A, et al. Heat transfer and film-cooling measurements on a stator vane with fan-shaped cooling holes[R]. ASME GT 2005-68258, 2005.
    [9] LIU C L, ZHU H R, WU A S, et al. Experimental investigation on the influence of inclination angle on the film cooling performance of diffuser shaped holes[R]. ASME GT 2016-56092, 2016.
    [10] FU Z Y, ZHU H R, LIU C L, et al. Experimental investigation of dust-pan shaped hole film cooling characteristics on pressure side of a turbine in a linear transonic cascade[R]. ASME GT 2017-63452, 2017.
    [11] KHAJEHHASANI S, JUBRAN B. Film cooling from novel sister shaped single-holes[R]. ASME GT 2014-25971, 2014.
    [12] BUNKER R S. A review of shaped hole turbine film cooling technology[J]. ASME Transactions Journal of Heat Transfer,2005,127: 441-453. doi: 10.1115/1.1860562
    [13] PEDERSEN D,ECKERT E,GOLDSTEIN R. Film cooling with large density differences between the mainstream and the secondary fluid measured by the heat-mass transfer analogy[J]. ASME Transactions Journal of Heat Transfer,1977,99: 620-627. doi: 10.1115/1.3450752
    [14] SINHA A,BOGARD D,CRAWFORD M. Film cooling effectiveness downstream of a single row of holes with variable density ratio[J]. Journal of Turbomachinery,1991,113(3): 442-449. doi: 10.1115/1.2927894
    [15] SCHREIVOGEL P, KROSS B, PFITZNER M. Density ratio effects on the flow field emanating from cylindrical effusion and trenched film cooling holes[R]. ASME GT2014-25143, 2014.
    [16] NARZARY D P,LIU K C,RALLABANDI A P,et al. Influence of coolant density on turbine blade film-cooling using pressure sensitive paint technique[J]. Journal of Turbomachinery,2012,134(3): 031006.1-031006.10.
    [17] LIU K, YANG S F, HAN J C. Influence of coolant density on turbine blade film-cooling with compound-angle shaped holes[R]. ASME GT2012-69117, 2012.
    [18] 李佳, 任静, 蒋洪德. 密度比和吹风比对透平静叶气膜冷却的影响[J]. 工程热物理学报, 2011, 32(8): 1295-1298.

    LI Jia, REN Jing, JIANG Hongde. Effects of density ratio and blowing ratio on the film cooling effectiveness on a turbine vane[J]. Journal of Engineering Thermophysics, 2011, 32(8): 1295-1298. (in Chinese)
    [19] 付仲议,朱惠人,姜茹,等. 高主流湍流度下密度比对涡轮导叶全气膜冷却特性的影响[J]. 推进技术,2019,40(7): 1585-1593. doi: 10.13675/j.cnki.tjjs.180438

    FU Zhongyi,ZHU Huiren,JIANG Ru,et al. Effects of density ratio on full film cooling characteristrics of turbine guide vane with high mainstream turbulence[J]. Journal of Propulsion Technology,2019,40(7): 1585-1593. (in Chinese) doi: 10.13675/j.cnki.tjjs.180438
    [20] 姚家旭,徐进,张科,等. 横向间距与密度比对双射流气膜冷却特性影响[J]. 航空动力学报,2018,33(6): 1336-1344.

    YAO Jiaxu,XU Jin,ZHANG Ke,et al. Effects of spanwise distance and density ratio on the characteristic of double-jet film-cooling[J]. Journal of Aerospace Power,2018,33(6): 1336-1344. (in Chinese)
    [21] 李冰,朱惠人,许都纯,等. 密度比对涡轮叶片表面气膜冷却换热系数的影响[J]. 航空学报,2007,28(4): 801-805. doi: 10.3321/j.issn:1000-6893.2007.04.006

    LI Bing,ZHU Huiren,XU Duchun,et al. Influences of density ratio on film cooling heat transfer of turbine blade surface[J]. Acta Aeronautica et Astronautica Sinica,2007,28(4): 801-805. (in Chinese) doi: 10.3321/j.issn:1000-6893.2007.04.006
    [22] HAN J C,RALLABANDI A P. Turbine blade film cooling using psp technique[J]. Frontiers in Heat and Mass Transfer,2010,1: 227-237.
    [23] 李佳. 燃气轮机透平气膜冷却机理的实验与理论研究[D]. 北京: 清华大学, 2011.

    LI Jia. Experimental and theoretical study of the characteristics of gas turbine film cooling[D]. Beijing: Tsinghua University, 2011. (in Chinese)
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  130
  • HTML浏览量:  38
  • PDF量:  48
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-26
  • 网络出版日期:  2022-12-11

目录

    /

    返回文章
    返回