留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基础随机激励下纤维增强复合薄板振动疲劳寿命预报

许卓 徐鹤松 李晖 王相平 张海洋 刘洋 孙伟 马辉 赵丙峰 韩清凯 贾璞 周晋 闻邦椿

许卓, 徐鹤松, 李晖, 等. 基础随机激励下纤维增强复合薄板振动疲劳寿命预报[J]. 航空动力学报, 2023, 38(1):47-54 doi: 10.13224/j.cnki.jasp.20220155
引用本文: 许卓, 徐鹤松, 李晖, 等. 基础随机激励下纤维增强复合薄板振动疲劳寿命预报[J]. 航空动力学报, 2023, 38(1):47-54 doi: 10.13224/j.cnki.jasp.20220155
XU Zhuo, XU Hesong, LI Hui, et al. Vibration fatigue life prediction of fiber reinforced composite thin plate under basic random excitation[J]. Journal of Aerospace Power, 2023, 38(1):47-54 doi: 10.13224/j.cnki.jasp.20220155
Citation: XU Zhuo, XU Hesong, LI Hui, et al. Vibration fatigue life prediction of fiber reinforced composite thin plate under basic random excitation[J]. Journal of Aerospace Power, 2023, 38(1):47-54 doi: 10.13224/j.cnki.jasp.20220155

基础随机激励下纤维增强复合薄板振动疲劳寿命预报

doi: 10.13224/j.cnki.jasp.20220155
基金项目: 国家自然科学基金(51970530,U1708257); 中央高校基本科研业务费专项资金(N2103026); 装备预研重点实验室基金(6142905192512); 东北电力大学博士科研启动基金(BSJXM-2020221)
详细信息
    作者简介:

    许卓(1986-),男,讲师,博士,主要从事复合结构减振降噪研究

    通讯作者:

    李晖(1982-),男,副教授、博士生导师,博士,主要从事复合结构减振降噪研究。E-mail:lh200300206@163.com

  • 中图分类号: V233.1

Vibration fatigue life prediction of fiber reinforced composite thin plate under basic random excitation

  • 摘要:

    针对传统有限元建模黑箱操作多、计算成本大、不具有自主知识产权等问题,基于经典层合板理论,随机振动理论和Miner线性积累损伤准则,建立了基础随机激励下纤维增强复合薄板振动疲劳寿命预测的解析模型。基于应力模态法,推导了纤维增强复合薄板的应力频响函数,在考虑随机激励的基础上,得到了结构的随机振动等效应力功率谱密度函数。通过Dirlik、Bendat和Benasciutti-Tovo三种频域模型对应的概率密度函数,成功求解了相应的振动疲劳寿命。另外,采用ANSYS与nCode软件对模型及其预测结果的正确性进行了验证,研究发现该模型寿命计算结果相对于商业软件计算结果的偏差不超过14.8%,但计算效率提高了17%~33%。因此,该模型可为预测随机激励下各向异性复合薄板的振动疲劳问题,提供一种思路和工具。

     

  • 图 1  基础随机激励下纤维增强层合板的理论模型

    Figure 1.  Theoretical model of fiber composite plate under basic random excitation

    图 2  复合薄板有限元模型

    Figure 2.  Finite element model of composite thin plate

    图 3  随机激励载荷谱

    Figure 3.  Random excitation load spectrum

    图 4  本文和nCode软件计算获得的应力功率谱密度曲线

    Figure 4.  Stress power spectral density curve calculated by this paper and nCode software

    表  1  解析模型与有限元模型计算获得的复合薄板的前4阶固有频率及其偏差

    Table  1.   The first 4 natural frequencies and their deviations of composite thin plate calculated by analytical model and finite element model

    项目固有频率
    1阶2阶3阶4阶
    有限元模型计算值/Hz41.2159.1257.8527.0
    解析模型计算值/Hz41.4160.5260.4533.6
    偏差/%0.50.91.01.3
    下载: 导出CSV

    表  2  不同随机激励作用下本文提出的解析预测方法和nCode软件预测获得的疲劳寿命、计算时间及其偏差

    Table  2.   Fatigue life, calculation time and deviation predicted by analytic prediction method proposed in this paper and nCode software under different random excitations

    类型频域模型本文计算
    寿命/min
    nCode软件
    计算寿命/min
    计算精度
    偏差/%
    本文计算
    耗时/s
    nCode软件
    计算耗时/s
    计算效率
    偏差/%
    窄带恒值谱Dirlik117.5109.07.823.731.2−24.0
    Bendat117.17.419.5−37.5
    Tovo-Benasciutti117.78.020.8−33.3
    宽带梯形谱Dirlik6921.06266.710.430.336.5−17.0
    Bendat7067.512.826.2−28.2
    Tovo-Benasciutti7193.814.827.5−24.7
    下载: 导出CSV
  • [1] HUDA Z,EDI P. Materials selection in design of structures and engines of supersonic aircrafts: a review[J]. Materials and Design,2013,46: 552-560. doi: 10.1016/j.matdes.2012.10.001
    [2] 李晖, 孙伟, 许卓, 等. 纤维增强复合薄板振动测试与分析方法[M]. 北京: 机械工业出版社, 2019.
    [3] LI Hui,WU Huaishuai,ZHANG Tinan,et al. A nonlinear dynamic model of fiber-reinforced composite thin plate with temperature dependence in thermal environment[J]. Composites: Part B Engineering,2019,162: 206-218. doi: 10.1016/j.compositesb.2018.10.070
    [4] 熊峻江. 疲劳断裂可靠性工程学[M]. 北京: 国防工业出版社, 2008.
    [5] LI Hui,XUE Pengcheng,GUAN Zhongwei,et al. A new nonlinear vibration model of fiber-reinforced composite thin plate with amplitude-dependent property[J]. Nonlinear Dynamics,2018,94(3): 2219-2241. doi: 10.1007/s11071-018-4486-5
    [6] LI Hui,WANG Xintong,HU Xiaoyue,et al. Vibration and damping study of multifunctional grille composite sandwich plates with an IMAS design approach[J]. Composites: Part B Engineering,2021,223: 109078.1-109078.14.
    [7] NIESLONY A,BOEHM M. Mean stress effect correction using constant stress ratio S-N curves[J]. International Journal of Fatigue,2013,52: 49-56. doi: 10.1016/j.ijfatigue.2013.02.019
    [8] NIESLONY A,BOEHM M. Mean stress effect correction in frequency-domain methods for fatigue life assessment[J]. Procedia Engineering,2015,101: 347-354. doi: 10.1016/j.proeng.2015.02.042
    [9] GE Jie,SUN Yi,ZHOU Song,et al. A hybrid frequency-time domain method for predicting multiaxial fatigue life of 7075-T6 aluminium alloy under random loading[J]. Fatigue and Fracture of Engineering Materials and Structures,2015,38(3): 247-256. doi: 10.1111/ffe.12224
    [10] PALMIERI M,CESNIK M,SLAVIC J,et al. Non-gaussianity and non-stationarity in vibration fatigue[J]. International Journal of Fatigue,2017,97: 9-19. doi: 10.1016/j.ijfatigue.2016.12.017
    [11] MI Chengji,LIU Jidong,XIAO Xuewen,et al. Random vibration fatigue life assessment and optimization of a train buffer beam considering welding residual stress[J]. Journal of Mechanical Science and Technology,2020,34(3): 1071-1080. doi: 10.1007/s12206-020-0116-5
    [12] LUO Zhengbo,CHEN Huaihai,HE Xudong. Influences of correlations between biaxial random vibrations on the fatigue lives of notched metallic specimens[J]. International Journal of Fatigue,2020,139: 105730.1-105730.14.
    [13] GAO Daiyang,YAO Weixing,WEN Weidong,et al. A multiaxial fatigue life prediction method for metallic material under combined random vibration loading and mean stress loading in the frequency domain[J]. International Journal of Fatigue,2021,148(7): 106235.1-106235.15.
    [14] ZHOU Song,SUN Yi,GUO Licheng. Random fatigue life prediction of carbon fibre-reinforced composite laminate based on hybrid time-frequency domain method[J]. Advanced Composite Materials,2016,26(2): 181-195.
    [15] WU Zengwen,ZHAO Yuan,LIANG Jun,et al. A frequency domain approach in residual stiffness estimation of composite thin-wall structures under random fatigue loadings[J]. International Journal of Fatigue,2019,124: 571-580. doi: 10.1016/j.ijfatigue.2019.03.013
    [16] GAO Daiyang,YAO Weixing,WEN Weidong,et al. Equivalent spectral method to estimate the fatigue life of composite laminates under random vibration loading[J]. Mechanics of Composite Materials,2021,57(1): 101-114. doi: 10.1007/s11029-021-09937-2
    [17] HYER M W. Stress analysis of fiber-reinforced composite materials[M]. Lancaster, UK: DEStech Publications Inc, 2009.
    [18] 薛鹏程,李晖,常永乐,等. 悬臂边界下纤维增强复合薄板固有频率计算及验证[J]. 航空动力学报,2016,31(7): 1754-1760. doi: 10.13224/j.cnki.jasp.2016.07.026

    XUE Pengcheng,LI Hui,CHANG Yongle,et al. Natural frequency calculation and validation of fiber reinforced composite thin plate under cantilever boundary[J]. Journal of Aerospace Power,2016,31(7): 1754-1760. (in Chinese) doi: 10.13224/j.cnki.jasp.2016.07.026
    [19] 李晖,薛鹏程,周正学,等. 基于多层次修正的纤维复合薄板振动响应预测[J]. 哈尔滨工程大学学报,2018,39(10): 1661-1667. doi: 10.11990/jheu.201707053

    LI Hui,XUE Pengcheng,ZHOU Zhengxue,et al. Prediction of vibration response in fiber composite thin plate based on the multilevel correction method[J]. Journal of Harbin Engineering University,2018,39(10): 1661-1667. (in Chinese) doi: 10.11990/jheu.201707053
    [20] PITOISET X,PREMOUNT A. Spectral methods for multiaxial random fatigue analysis of metallic structure[J]. International Journal of Fatigue,2000,22(7): 541-550. doi: 10.1016/S0142-1123(00)00038-4
    [21] ALLEGRI G,ZHANG X. On the inverse power laws for accelerated random fatigue testing[J]. International Journal of Fatigue,2008,30(6): 967-977. doi: 10.1016/j.ijfatigue.2007.08.023
    [22] DIRLIK T. Application of computers in fatigue analysis[D]. Warwickshire, UK: University of Warwick, 1985.
    [23] BENDAT J S. Probability functions for random responses[R]. NASA-CR-33, 1964.
    [24] BENASCIUTTI D,TOVO R. Spectral methods for lifetime prediction under wide-band stationary random processes[J]. International Journal of Fatigue,2005,27(8): 867-877. doi: 10.1016/j.ijfatigue.2004.10.007
    [25] 胡杰. 基础激励下基于模态叠加法的谐响应分析[J]. 计算机辅助工程,2014,23(6): 94-96. doi: 10.13340/j.cae.2014.06.020

    HU Jie. Harmonic response analysis based on mode superposition method under base excitation[J]. Computer Aided Engineering,2014,23(6): 94-96. (in Chinese) doi: 10.13340/j.cae.2014.06.020
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  152
  • HTML浏览量:  22
  • PDF量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-26
  • 网络出版日期:  2022-12-05

目录

    /

    返回文章
    返回