留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于气候实验室的民机整机发动机低温启动实验

马建军 吴敬涛 杜文辉 王嘉玺 都亚鹏

马建军, 吴敬涛, 杜文辉, 等. 基于气候实验室的民机整机发动机低温启动实验[J]. 航空动力学报, 2024, 39(2):20220163 doi: 10.13224/j.cnki.jasp.20220163
引用本文: 马建军, 吴敬涛, 杜文辉, 等. 基于气候实验室的民机整机发动机低温启动实验[J]. 航空动力学报, 2024, 39(2):20220163 doi: 10.13224/j.cnki.jasp.20220163
MA Jianjun, WU Jingtao, DU Wenhui, et al. Full scale civil aircraft engine cold start experiment in climatic environmental test laboratory[J]. Journal of Aerospace Power, 2024, 39(2):20220163 doi: 10.13224/j.cnki.jasp.20220163
Citation: MA Jianjun, WU Jingtao, DU Wenhui, et al. Full scale civil aircraft engine cold start experiment in climatic environmental test laboratory[J]. Journal of Aerospace Power, 2024, 39(2):20220163 doi: 10.13224/j.cnki.jasp.20220163

基于气候实验室的民机整机发动机低温启动实验

doi: 10.13224/j.cnki.jasp.20220163
基金项目: 基础科研(JCKY2020205B029)
详细信息
    作者简介:

    马建军(1989-),男,高级工程师,硕士,主要从事飞机气候环境适应性分析与实验技术研究

  • 中图分类号: V216.5

Full scale civil aircraft engine cold start experiment in climatic environmental test laboratory

  • 摘要:

    为解决在密闭大型气候实验室极端低温环境下,进行民机整机发动机低温启动实验带来的强扰动和安全性问题,基于实验室现有能力条件,从发动机尾气排放和极端低温空气补偿两方面开展了民机整机发动机低温启动实验技术研究。对于发动机尾气排放,提出了针对大涵道比涡扇发动机的尾气“分割排放”概念和排放质量流量预估方法,降低了从实验室排放的低温空气质量流量。对于空气补偿,采用液氮作为冷源将实验室外常温空气冷却至极端−50 ℃低温并持续补充进实验室,补偿排放损失、维持实验室内低温环境稳定和室内外压力平衡,保障实验安全。基于该项技术,在国内首次成功实施了民机整机−40 ℃发动机低温启动适航符合性实验,实验结果表明:飞机低温冷浸时间10 h,实验全过程室内温度波动在±3 ℃以内;与常温下相比发动机启动功能和性能无明显衰减。该项实验的成功为其他民机在实验室内开展发动机低温启动实验和相关适航标准规范的制定提供了实践依据和技术储备。

     

  • 图 1  A350XWB飞机在麦金利实验室气候环境实验

    Figure 1.  A350XWB climatic test in McKinley Climatic laboratory

    图 2  我国大型综合气候实验室

    Figure 2.  Large climatic test laboratory in China

    图 3  发动机尾气分割排放

    Figure 3.  Split discharge of engine exhaust gas

    图 4  排放流量e与管道直径d和背压Pb的关系

    Figure 4.  Relationship of discharged mass flow rate e, tube dimension d and back pressure Pb

    图 5  临界背压与管道直径的关系

    Figure 5.  Relationship of critical back pressure Pbc and tube dimension d

    图 6  发动机尾气分割排放计算模型

    Figure 6.  Geometrical model of engine exhaust gas split discharge

    图 7  网格划分

    Figure 7.  Mesh grid

    图 8  排放管道对发动机的影响

    Figure 8.  Effects of the dicharge tube on the engine

    图 9  自然状态尾气流动分布

    Figure 9.  Engine exhaust gas flow distribution in the free state

    图 10  自然状态Ltube=400 mm处径向位置尾气速度和温度

    Figure 10.  Velocity and temperature at radial position for Ltube=400 mm in the free state

    图 11  Ltube=400 mm、d=0.97 m排放参数理论与CFD对比

    Figure 11.  Theoretical and CFD discharge parameters for Ltube=400 mm and d=0.97 m

    图 12  尾气排放系统示意图

    Figure 12.  Schematic diagram of engine exhaust gas discharge system

    图 13  空气补偿系统原理图

    Figure 13.  Schematic diagram of air make-up system

    图 14  液氮-空气换热器

    Figure 14.  Liquid N2-air heat exchanger

    图 15  液氮换热器冷却调试结果

    Figure 15.  Cooling results of the liquid N2 heat exchanger in equipment debugging

    图 16  空气补偿系统布局

    Figure 16.  Layout of the air make-up system

    图 17  发动机启动时实验室内气流分布

    Figure 17.  Air distribution in the chamber during engine starting

    图 18  温度传感器布置

    Figure 18.  Location of the temperature sensors

    图 19  冷浸过程实验温度曲线

    Figure 19.  Experimental temperature during cold soak

    图 20  发动机启动实验期间的实验温度

    Figure 20.  Experimental temperature during engine starting

    图 21  发动机高温尾气排放红外成像

    Figure 21.  Infrared image of engine exhaust gas

    图 22  发动机启动及慢车时尾气排放系统参数

    Figure 22.  Patameters of the gas discharge system during engine starting and idle state

    图 23  常温与低温发动机启动参数对比

    Figure 23.  Engine starting partameters in room and cold temperatures

    表  1  某民机发动机主要参数

    Table  1.   Main parameters of certain civil aircraft engine

    参数数值或说明
    Ta/℃−40−40−40
    状态慢车30%N189%N1
    in/(kg/s)139.7218.0594.3
    s/(kg/s)130.4202.4539.1
    Tts/℃−38.0−35.9−10.9
    /(kg/s)8.014.253.5
    Tt/℃367.5267.7382.7
    下载: 导出CSV
  • [1] 唐虎,李喜明. 飞机气候试验[J]. 装备环境工程,2012,9(1): 60-65.

    TANG Hu,LI Ximing. Climatic test of aircraft[J]. Equipment Environmental Engineering,2012,9(1): 60-65. (in Chinese)
    [2] 王涛,米毅. 大型客机气候实验室试验研究[J]. 民用飞机设计与研究,2017(4): 117-120. doi: 10.19416/j.cnki.1674-9804.2017.04.023

    WANG Tao,MI Yi. Research on airliner climatic laboratory test[J]. Civil Aircraft Design & Research,2017(4): 117-120. (in Chinese) doi: 10.19416/j.cnki.1674-9804.2017.04.023
    [3] HENDRICKSON C L. Flight testing under extreme climatic conditions[R]. AFFTC-TIH-88 -004, 1988.
    [4] DRAKE C. Environmental test capabilities of the Air Force McKinley Climatic Laboratory[R]. AIAA1985-89, 1985.
    [5] BELL D. Icing at the McKinley climatic laboratory[R]. AIAA2005-695, 2005.
    [6] TOULOUSE M, LEWIS R. A350 XWB icing certification overview[R]. SAE Technical Paper 2015-01-211, 2015.
    [7] PELLICANO P, DUMONT C, SMITH T, et al. Propeller icing tunnel test on a full-scale turboprop engine[R]. DOT/FAA/AR-06/60, 2010.
    [8] 郭海红,潘旭,张志舒. 非标准大气条件下航空发动机地面起动性能[J]. 航空动力学报,2013,28(6): 1286-1290.

    GUO Haihong,PAN Xu,ZHANG Zhishu. Aero-engine ground starting performance at non-standard atmosphere[J]. Journal of Aerospace Power,2013,28(6): 1286-1290. (in Chinese)
    [9] 郭昕,杨志军. 航空发动机高、低温起动及高原起动试验技术探讨[J]. 航空动力学报,2003,18(3): 327-330. doi: 10.13224/j.cnki.jasp.2003.03.004

    GUO Xin,YANG Zhijun. Study of aeroengine starting tests at high/low temperatures and at plateau[J]. Journal of Aerospace Power,2003,18(3): 327-330. (in Chinese) doi: 10.13224/j.cnki.jasp.2003.03.004
    [10] 刘伟,黄开明,王旭,等. 低温对涡轴发动机起动性能影响的试验与分析[J]. 航空动力学报,2019,34(6): 1282-1289. doi: 10.13224/j.cnki.jasp.2019.06.011

    LIU Wei,HUANG Kaiming,WANG Xu,et al. Test and analysis on influences of low temperature on starting performance of turboshaft engine[J]. Journal of Aerospace Power,2019,34(6): 1282-1289. (in Chinese) doi: 10.13224/j.cnki.jasp.2019.06.011
    [11] 吴锋,龚小琦,乔松松. 高空舱内涡扇发动机低温起动试验[J]. 航空动力学报,2013,28(10): 2348-2354.

    WU Feng,GONG Xiaoqi,QIAO Songsong. Low temperature start testing of turbofan engine in altitude test cell[J]. Journal of Aerospace Power,2013,28(10): 2348-2354. (in Chinese)
    [12] KAMYKOWSKI R. Turbine engine cold-soak testing techniques[R]. AIAA-95-3076, 1995.
    [13] 胡九生,赵春光. 军用涡喷涡扇发动机低温起动试验的优化[J]. 燃气涡轮试验与研究,2002,15(1): 14-19.

    HU Jiusheng,ZHAO Chunguang. Optimization of cold start test on military turbojet/turbofan engines[J]. Gas Turbine Experiment and Research,2002,15(1): 14-19. (in Chinese)
    [14] 中国民用航空局. 运输类飞机适航标准: CCAR 25 [S]. 北京: 中国民用航空局, 2011.
    [15] 任智勇,李志鹏. 涡轴发动机高寒飞行试验和结果分析[J]. 现代机械,2017(6): 63-66.

    REN Zhiyong,LI Zhipeng. Flight test study and results analysis of turboshaft engine at extremely cold environment[J]. Modern Machinery,2017(6): 63-66. (in Chinese)
    [16] 张媛,苗禾状. 某型涡轴发动机地面低温起动技术研究[J]. 航空发动机,2011,37(6): 34-35,48. doi: 10.3969/j.issn.1672-3147.2011.06.011

    ZHANG Yuan,MIAO Hezhuang. Investigation on ground-start of a turboshaft engine in low temperature[J]. Aeroengine,2011,37(6): 34-35,48. (in Chinese) doi: 10.3969/j.issn.1672-3147.2011.06.011
    [17] 李娟妮,张超. 某型民用飞机试飞现状及思考[J]. 民用飞机设计与研究,2013(4): 68-70,78. doi: 10.3969/j.issn.1674-9804.2013.04.017

    LI Juanni,ZHANG Chao. Status and consideration of flight test for the certain civil aircraft[J]. Civil Aircraft Design & Research,2013(4): 68-70,78. (in Chinese) doi: 10.3969/j.issn.1674-9804.2013.04.017
    [18] RODRIGUEZ V J, BRELAGE S, THOMPSON M, et al. F-35 climatic chamber testing & system verification[R]. AIAA2018-3682, 2018.
    [19] ELFSTROM G M, LEE J H, LARRICK J C. Design and operation of the ADD environmental test facility[R]. Anchorage, US: 26th Congress of International Council of the Aeronautical Sciences, 2008.
    [20] 刘沛清. 空气动力学[M]. 北京: 科学出版社, 2021.
    [21] 弗莱克R D. 喷气推进基础与应用[M]. 周文祥, 姜成平, 高亚辉, 译. 北京: 科学出版社, 2021.
    [22] 廖达雄. 气体引射器原理及设计[M]. 北京: 国防工业出版社, 2018.
    [23] 马建军,姜亚军. 大型气候实验室气流组织仿真分析[J]. 装备环境工程,2019,16(11): 56-63.

    MA Jianjun,JIANG Yajun. Airflow distribution for large climatic test laboratory[J]. Equipment Environmental Engineering,2019,16(11): 56-63. (in Chinese)
    [24] 马建军. 飞机实验室低温试验方法研究[J]. 装备环境工程,2020,17(4): 51-57.

    MA Jianjun. Low temperature test method for aircraft in climatic laboratory[J]. Equipment Environmental Engineering,2020,17(4): 51-57. (in Chinese)
    [25] Transports Canada. Aircraft operations after ground cold soak[R]. AC 500-006, 2004.
  • 加载中
图(23) / 表(1)
计量
  • 文章访问数:  173
  • HTML浏览量:  74
  • PDF量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-28
  • 网络出版日期:  2023-09-25

目录

    /

    返回文章
    返回