留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压气机静叶失速与局部缝隙控制

赵文峰 姜斌 段昱 郑群

赵文峰, 姜斌, 段昱, 等. 压气机静叶失速与局部缝隙控制[J]. 航空动力学报, 2024, 39(3):20220164 doi: 10.13224/j.cnki.jasp.20220164
引用本文: 赵文峰, 姜斌, 段昱, 等. 压气机静叶失速与局部缝隙控制[J]. 航空动力学报, 2024, 39(3):20220164 doi: 10.13224/j.cnki.jasp.20220164
ZHAO Wenfeng, JIANG Bin, DUAN Yu, et al. Stator stall and partial clearance control of compressor[J]. Journal of Aerospace Power, 2024, 39(3):20220164 doi: 10.13224/j.cnki.jasp.20220164
Citation: ZHAO Wenfeng, JIANG Bin, DUAN Yu, et al. Stator stall and partial clearance control of compressor[J]. Journal of Aerospace Power, 2024, 39(3):20220164 doi: 10.13224/j.cnki.jasp.20220164

压气机静叶失速与局部缝隙控制

doi: 10.13224/j.cnki.jasp.20220164
基金项目: 国家科技重大专项(2017-Ⅱ-0006-0019,2017-Ⅰ-0009-0010)
详细信息
    作者简介:

    赵文峰(1992-),男,工程师,博士,主要从事叶轮机械气动热力学研究

  • 中图分类号: V239

Stator stall and partial clearance control of compressor

  • 摘要:

    通过对某8级压气机进行数值计算得到了在设计转速下船舶压气机的流场特点与失稳机理。同时以此8级压气机中的前1.5级被作为研究对象探究压气机静叶轮毂静叶局部缝隙对角区失速的影响。结果表明,在设计转速下近失速点流动的不稳定性主要发生在静叶角区,主要原因是静叶角区失速。角区出现闭式分离泡并堵塞流场。1.5级压气机的计算结果表明,设计转速下压气机的失稳原因与8级压气机相同。通过在不同位置设置静叶局部缝隙可以发现,静叶局部缝隙能够有效的拓宽压气机裕度。其中在中间位置的缝隙扩稳效果最好,可以将裕度从22.1%提升为27.2%,最大效率从93.9%下降到93.21%。其他位置间隙所产生泄漏流动量不足,无法完全消除角区失速涡。最佳静叶局部缝隙的位置是在近失速点角区失速涡的涡核处,此时能保证间隙泄漏流动量最大。

     

  • 图 1  计算模型

    Figure 1.  Computational model

    图 2  计算网格

    Figure 2.  Computational mesh

    图 3  静叶局部缝隙示意图

    Figure 3.  Partial clearance schemes of stator

    图 4  试验验证

    Figure 4.  Experimental verification

    图 5  90%H的相对马赫数

    Figure 5.  Relative Mach number at 90%H

    图 6  前两级叶顶相对马赫数

    Figure 6.  Relative Mach number at top of the first 2 stages

    图 7  R1近失速点间隙泄漏流

    Figure 7.  Clearance leakage at near stall point of R1

    图 8  后两级叶顶相对马赫数

    Figure 8.  Relative Mach number at top of the last 2 stages

    图 9  S8角区极限流线

    Figure 9.  Limiting streamline of S8 in hub corner

    图 10  动叶叶顶马赫数云图

    Figure 10.  Mach number contour at top of rotor

    图 11  动叶叶顶相对涡量

    Figure 11.  Relative vorticity at top of rotor

    图 12  叶顶回流区的速度(100%转速)

    Figure 12.  Back-flow in the rotor top (100% rotation speed)

    图 13  角区极限流线与静压系数分布(100%转速)

    Figure 13.  Limiting streamlines and static pressure coefficient contour in hub corner (100% rotation speed)

    图 14  静压系数云图与角区极限流线(5%H

    Figure 14.  Static pressure coefficient contour and limiting streamlines in hub corner (5%H)

    图 15  间隙泄漏与二次流的互相作用

    Figure 15.  The interaction between clearance leakage and secondary flow

    图 16  静叶出口静熵

    Figure 16.  Static entropy at outlet of stator

    图 17  轴向密流的径向分布

    Figure 17.  Radial distribution of axial velocity density

    图 18  不同间隙下的压气机特性线

    Figure 18.  Characteristic lines with different clearances

    表  1  100%转速压气机裕度

    Table  1.   Compressor margin at 100% rotation speed

    项目原型尾缘后部中间前部
    裕度/%22.123.0124.8427.825.16
    效率/%93.9093.5193.3193.2192.4
    下载: 导出CSV
  • [1] HORLOCK J H,LOUIS J F,PERCIVAL P M E,et al. Wall stall in compressor cascades[J]. Journal of Basic Engineering,1966,88(3): 637-648. doi: 10.1115/1.3645925
    [2] JOSLYN H, DRING R. Multi-stage compressor airfoil aerodynamics: Ⅰ airfoil potential flow analysis, Ⅱ airfoil boundary layer analysis[R]. AIAA1986-1744, 1986.
    [3] SCHULZ H D,GALLUS H D. Experimental investigation of the three-dimensional flow in an annular compressor cascade[J]. Journal of Turbomachinery,1988,110(4): 467-478. doi: 10.1115/1.3262220
    [4] GANNON A J,HOBSON G V. Pre-stall instability distribution over a transonic compressor rotor[J]. Journal of Fluids Engineering,2009,131(5): 51106. doi: 10.1115/1.3112388
    [5] THIAM A, WHITTLESEY R, WARK C, et al. Corner separation and the on-set of stall in an axial compressor[R]. AIAA2008-4299, 2008.
    [6] YAMADA K,FURUKAWA M,TAMURA Y,et al. Large-scale detached-eddy simulation analysis of stall inception process in a multistage axial flow compressor[J]. Journal of Turbomachinery,2017,139(7): 071002. doi: 10.1115/1.4035519
    [7] 陆华伟,郑雨晨,郭爽,等. 周向槽抽吸影响扩压叶栅流动损失与旋涡结构研究[J]. 工程热物理学报,2019,40(1): 60-67.

    LU Huawei,ZHENG Yuchen,GUO Shuang,et al. Study on flow loss and vortex structure of compressor cascade with circumferential suction groove[J]. Journal of Engineering Thermophysics,2019,40(1): 60-67. (in Chinese)
    [8] 韩兴伟,陆华伟,钟兢军,等. 组合抽吸槽对跨声速压气机转子性能影响的数值研究[J]. 大连海事大学学报,2017,43(1): 40-44,52.

    HAN Xingwei,LU Huawei,ZHONG Jingjun,et al. Numerical simulation of effect of boundary layer suction with multi-slots on transonic compressor rotor performance[J]. Journal of Dalian Maritime University,2017,43(1): 40-44,52. (in Chinese)
    [9] FENG Yanyan,SONG Yanping,CHEN Fu,et al. Effect of endwall vortex generator jets on flow separation control in a linear compressor cascade[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering,2015,229(12): 2221-2230. doi: 10.1177/0954410015573340
    [10] 李艺雯,张千丰,李继超,等. 高负荷叶栅中康达喷气控制方法的设计及分析[J]. 工程热物理学报,2018,39(4): 738-746.

    LI Yiwen,ZHANG Qianfeng,LI Jichao,et al. Design and analysis of coanda jet in a highly-loaded compressor cascade[J]. Journal of Engineering Thermophysics,2018,39(4): 738-746. (in Chinese)
    [11] 张海灯,吴云,李应红,等. 高负荷压气机失速及其等离子体流动控制[J]. 工程热物理学报,2019,40(2): 289-299.

    ZHANG Haideng,WU Yun,LI Yinghong,et al. Rotating stall of a highly loaded compressor and its plasma flow control[J]. Journal of Engineering Thermophysics,2019,40(2): 289-299. (in Chinese)
    [12] 柳阳威, 梁斐杰, 孙槿静, 等. 抑制压气机静子角区分离的等离子体组合激励布局方法: CN103807218B[P]. 2017-01-11.
    [13] 王如根,胡加国,李仁康,等. 高负荷压气机叶栅开缝射流分离控制效果研究[J]. 推进技术,2018,39(6): 1250-1259.

    WANG Rugen,HU Jiaguo,LI Renkang,et al. Effects of separation control using slot jet approach in critically loaded compressor cascade[J]. Journal of Propulsion Technology,2018,39(6): 1250-1259. (in Chinese)
    [14] 周志涛,樊澍,胡峰,等. 射流预冷对高空高马赫数下压气机性能影响的数值研究[J]. 热能动力工程,2021,36(9): 95-100.

    ZHOU Zhitao,FAN Shu,HU Feng,et al. Numerical study on the influence of jet pre-cooling on compressor performance under high altitude and high Mach[J]. Journal of Engineering for Thermal Energy and Power,2021,36(9): 95-100. (in Chinese)
    [15] SMITH L H Jr,YEH H. Sweep and dihedral effects in axial-flow turbomachinery[J]. Journal of Basic Engineering,1963,85(3): 401-414. doi: 10.1115/1.3656623
    [16] FILIPPOV G A,WANG Zhongqi. The calculation of axial symmetric flow in a turbine stage with small ratio of diameter to blade length[J]. Journal of Moscow Power Institute,1963,47: 63-78.
    [17] 刘艳明,汪亮,尚东然,等. 基于端壁涡流发生器的压气机叶栅角区分离控制研究[J]. 推进技术,2019,40(6): 1285-1292.

    LIU Yanming,WANG Liang,SHANG Dongran,et al. Investigation of corner separation control for compressor cascade based on endwall vortex generator[J]. Journal of Propulsion Technology,2019,40(6): 1285-1292. (in Chinese)
    [18] 马姗,楚武利,张皓光,等. 涡流发生器和附面层抽吸相结合对于低速压气机叶栅性能的影响[J]. 推进技术,2019,40(3): 515-524.

    MA Shan,CHU Wuli,ZHANG Haoguang,et al. Combined effects of vortex generator and boundary layer suction on performance of low-speed compressor cascade[J]. Journal of Propulsion Technology,2019,40(3): 515-524. (in Chinese)
    [19] 徐志晖,洪林. 组合型周向槽机匣处理优化方案的数值研究[J]. 流体机械,2017,45(9): 40-44,39.

    XU Zhihui,HONG Lin. Numerical investigation of optimized schemes of the combined circumferential groove casing treatment[J]. Fluid Machinery,2017,45(9): 40-44,39. (in Chinese)
    [20] 崔建光,叶学民,李春曦. 斜沟槽机匣处理对轴流风机性能影响的数值研究[J]. 流体机械,2017,45(1): 30-37.

    CUI Jianguang,YE Xuemin,LI Chunxi. Simulation of the effect of sloped trench casing treatment on the performance of an axial flow fan[J]. Fluid Machinery,2017,45(1): 30-37. (in Chinese)
    [21] ZHAO Wenfeng,ZHENG Qun,MALIK A,et al. The effect of trailing edge clearance in suppressing hub-corner stall[J]. Energies,2019,12(2): 1-17.
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  100
  • HTML浏览量:  60
  • PDF量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-29
  • 网络出版日期:  2023-10-19

目录

    /

    返回文章
    返回