留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MDBD等离子体激励器诱导流场耦合作用机理

徐泽阳 高超 王玉帅 贾天昊 王娜

徐泽阳, 高超, 王玉帅, 等. MDBD等离子体激励器诱导流场耦合作用机理[J]. 航空动力学报, 2024, 39(3):20220170 doi: 10.13224/j.cnki.jasp.20220170
引用本文: 徐泽阳, 高超, 王玉帅, 等. MDBD等离子体激励器诱导流场耦合作用机理[J]. 航空动力学报, 2024, 39(3):20220170 doi: 10.13224/j.cnki.jasp.20220170
XU Zeyang, GAO Chao, WANG Yushuai, et al. Mechanism of coupling effect of flow field induced by MDBD actuator[J]. Journal of Aerospace Power, 2024, 39(3):20220170 doi: 10.13224/j.cnki.jasp.20220170
Citation: XU Zeyang, GAO Chao, WANG Yushuai, et al. Mechanism of coupling effect of flow field induced by MDBD actuator[J]. Journal of Aerospace Power, 2024, 39(3):20220170 doi: 10.13224/j.cnki.jasp.20220170

MDBD等离子体激励器诱导流场耦合作用机理

doi: 10.13224/j.cnki.jasp.20220170
基金项目: 国家自然科学基金(12172299,1190021162)
详细信息
    作者简介:

    徐泽阳(1990−),男,博士,主要从事等离子体流动控制方面的研究

  • 中图分类号: V211.3

Mechanism of coupling effect of flow field induced by MDBD actuator

  • 摘要:

    为揭示多级介质阻挡放电(multi dielectric barrier discharge,MDBD)等离子体激励器诱导流场耦合机理,采用等离子体体积力模型与Navier-Stokes(N-S)方程结合的数值模拟方法,开展静止大气条件下4组激励器并联的MDBD诱导流场特性研究。结果表明:定常激励时,MDBD可以有效提高诱导射流速度与厚度、拓宽激励区域。非定常激励时,MDBD每级激励器对诱导涡起到持续的动量注入作用,延缓其耗散,并增强诱导涡的对流与掺混能力。激励频率对MDBD性能影响较大,激励频率f=20 Hz时,DBD诱导脉冲射流形成的低压区域对诱导涡起“拖拽”作用,使其加速向壁面靠近;f=50 Hz时,诱导涡出现融合现象,旋涡强度增强,对流速度提高,涡核高度降低;f=200 Hz时,诱导涡之间相互作用减弱,呈现为一组“涡簇”向激励器下游移动。

     

  • 图 1  DBD激励器示意图

    Figure 1.  The sketch of DBD

    图 2  电势方程和电荷密度方程的边界条件

    Figure 2.  Boundary conditions for the equations of electric potential and charge density

    图 3  激励器尺寸与计算网格

    Figure 3.  Size and computational grids of actuator

    图 4  诱导速度场分布数值模拟与文献[17]实验结果对比

    Figure 4.  Comparison of Ref.[17] data and numerical results of the induced velocity field

    图 5  非定常激励流场结构数值模拟与文献[16]实验结果对比

    Figure 5.  Comparison of Ref.[16] data and numerical results of flow structure under unsteady actuation

    图 6  MDBD诱导速度场分布

    Figure 6.  Induced flow velocity field distribution of MDBD

    图 7  MDBD与SDBD在y=0.3 mm高度处壁面射流Ux对比

    Figure 7.  Ux comparison between MDBD and SDBD at the height of y=0.3 mm

    图 8  MDBD不同位置速度型

    Figure 8.  Velocity profile of MDBD at different positions

    图 9  MDBD放电波形

    Figure 9.  Waveforms of MDBD

    图 10  SDBD与MDBD诱导涡演化过程对比(f=10 Hz)

    Figure 10.  Comparison of induced vortex evolution processes of SDBD and MDBD (f=10 Hz)

    图 11  SDBD与MDBD诱导涡涡核轨迹比较(f=10 Hz)

    Figure 11.  Comparison of the induced vortex core trajectory of SDBD and MDBD (f=10 Hz)

    图 12  SDBD与MDBD诱导涡x方向对流速度对比(f=10 Hz)

    Figure 12.  Comparison of the x component velocity of induced vortex core of SDBD and MDBD (f=10 Hz)

    图 13  涡量分布与诱导涡涡核运动轨迹(f=20 Hz)

    Figure 13.  Vorticity distribution and the trajectory of induced vortex core (f=20 Hz)

    图 14  诱导涡x方向对流速度(f=20 Hz)

    Figure 14.  x component velocity of vortex core (f=20 Hz)

    图 15  涡量分布与诱导涡融合过程(f=50 Hz)

    Figure 15.  Vorticity distribution and induced vortex fusion process (f=50 Hz)

    图 16  诱导涡x方向对流速度与涡核运动轨迹(f=50 Hz)

    Figure 16.  x component velocity and the trajectory of induced vortex core (f=50 Hz)

    图 17  f=200 Hz时T时刻流线图与速度分布

    Figure 17.  Streamline and velocity distribution at the time of T with f=200 Hz

    图 18  y=0.3 mm高度脉冲射流x方向速度时-空分布结果与不同激励频率最大脉冲射流速度对比

    Figure 18.  Spatio-temporal contours of the x component velocity of the impulse jet and the maximum velocity of x component impulse jet with different actuation frequencies at heigh of y=0.3 mm

  • [1] 刘志勇,罗振兵,袁先旭,等. 周期性激励控制翼型流动分离研究综述[J]. 力学进展,2020,50(0): 221-248. LIU Zhiyong,LUO Zhenbing,YUAN Xianxu,et al. Review of controlling flow separation over airfoils with periodic excitation[J]. Advances in Mechanics,2020,50(0): 221-248. (in Chinese

    LIU Zhiyong, LUO Zhenbing, YUAN Xianxu, et al. Review of controlling flow separation over airfoils with periodic excitation[J]. Advances in Mechanics, 2020, 50(0): 221-248. (in Chinese)
    [2] ZHU Chengyong,CHEN Jie,WU Jianghai,et al. Dynamic stall control of the wind turbine airfoil via single-row and double-row passive vortex generators[J]. Energy,2019,189: 116272. doi: 10.1016/j.energy.2019.116272
    [3] WANG Zhenyu,WANG Yuchen,ZHUANG Mei. Improvement of the aerodynamic performance of vertical axis wind turbines with leading-edge serrations and helical blades using CFD and Taguchi method[J]. Energy Conversion and Management,2018,177: 107-121. doi: 10.1016/j.enconman.2018.09.028
    [4] ZHAO Guoqing,ZHAO Qijun. Dynamic stall control optimization of rotor airfoil via variable droop leading-edge[J]. Aerospace Science and Technology,2015,43: 406-414. doi: 10.1016/j.ast.2015.03.022
    [5] FESZTY D,GILLIES E A,VEZZA M. Alleviation of airfoil dynamic stall moments via trailing-edge flap flow control[J]. AIAA Journal,2004,42(1): 17-25. doi: 10.2514/1.853
    [6] 许和勇,邢世龙,叶正寅,等. 基于充气前缘技术的旋翼翼型动态失速抑制[J]. 航空学报,2017,38(6): 120799. XU Heyong,XING Shilong,YE Zhengyin,et al. Dynamic stall suppression for rotor airfoil based on inflatable leading edge technology[J]. Acta Aeronautica et Astronautica Sinica,2017,38(6): 120799. (in Chinese

    XU Heyong, XING Shilong, YE Zhengyin, et al. Dynamic stall suppression for rotor airfoil based on inflatable leading edge technology[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6): 120799. (in Chinese)
    [7] 罗振兵,夏智勋. 合成射流技术及其在流动控制中应用的进展[J]. 力学进展,2005,35(2): 221-234. LUO Zhenbing,XIA Zhixun. Advances in synthetic jet technology and applications in flow control[J]. Advances In Mechanics,2005,35(2): 221-234. (in Chinese doi: 10.3321/j.issn:1000-0992.2005.02.009

    LUO Zhenbing, XIA Zhixun. Advances in synthetic jet technology and applications in flow control[J]. Advances In Mechanics, 2005, 35(2): 221-234. (in Chinese) doi: 10.3321/j.issn:1000-0992.2005.02.009
    [8] 王昊,牛中国,蒋甲利. 二维翼型吹/吸气流动控制试验研究[J]. 航空科学技术,2020,31(5): 56-63. WANG Hao,NIU Zhongguo,JIANG Jiali. Experimental study on 2D airfoil blowing and suction flow control[J]. Aeronautical Science & Technology,2020,31(5): 56-63. (in Chinese doi: 10.19452/j.issn1007-5453.2020.05.008

    WANG Hao, NIU Zhongguo, JIANG Jiali. Experimental study on 2D airfoil blowing and suction flow control[J]. Aeronautical Science & Technology, 2020, 31(5): 56-63. (in Chinese) doi: 10.19452/j.issn1007-5453.2020.05.008
    [9] 李国强,常智强,张鑫,等. 翼型动态失速等离子体流动控制试验[J]. 航空学报,2018,39(8): 122111. LI Guoqiang,CHANG Zhiqiang,ZHANG Xin,et al. Experiment on flow control of airfoil dynamic stall using plasma actuator[J]. Acta Aeronautica et Astronautica Sinica,2018,39(8): 122111. (in Chinese

    LI Guoqiang, CHANG Zhiqiang, ZHANG Xin, et al. Experiment on flow control of airfoil dynamic stall using plasma actuator[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(8): 122111. (in Chinese)
    [10] 吴云,李应红. 等离子体流动控制研究进展与展望[J]. 航空学报,2015,36(2): 381-405. WU Yun,LI Yinghong. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica,2015,36(2): 381-405. (in Chinese

    WU Yun, LI Yinghong. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 381-405. (in Chinese)
    [11] MENG Xuanshi,HU Haiyang,YAN Xu,et al. Lift improvements using duty-cycled plasma actuation at low Reynolds numbers[J]. Aerospace Science and Technology,2018,72: 123-133. doi: 10.1016/j.ast.2017.10.038
    [12] AL-SADAWI L,CHONG T P,KIM J H. Aerodynamic noise reduction by plasma actuators for a flat plate with blunt trailing edge[J]. Journal of Sound and Vibration,2019,439: 173-193. doi: 10.1016/j.jsv.2018.08.029
    [13] 马杰,梁华,吴云,等. 毫秒脉冲等离子体激励改善飞翼的气动性能实验[J]. 航空动力学报,2016,31(8): 1845-1851. MA Jie,LIANG Hua,WU Yun,et al. Experiment for improving aerodynamic performances of a flying wing by millisecond pulsed plasma actuation[J]. Journal of Aerospace Power,2016,31(8): 1845-1851. (in Chinese doi: 10.13224/j.cnki.jasp.2016.08.007

    MA Jie, LIANG Hua, WU Yun, et al. Experiment for improving aerodynamic performances of a flying wing by millisecond pulsed plasma actuation[J]. Journal of Aerospace Power, 2016, 31(8): 1845-1851. (in Chinese) doi: 10.13224/j.cnki.jasp.2016.08.007
    [14] 王宇天,张百灵,李益文,等. 等离子体激励控制激波与边界层干扰流动分离数值研究[J]. 航空动力学报,2018,33(2): 364-371. WANG Yutian,ZHANG Bailing,LI Yiwen,et al. Numerical investigation for control of shock wave and boundary layer interactions flow separation with plasma actuation[J]. Journal of Aerospace Power,2018,33(2): 364-371. (in Chinese doi: 10.13224/j.cnki.jasp.2018.02.014

    WANG Yutian, ZHANG Bailing, LI Yiwen, et al. Numerical investigation for control of shock wave and boundary layer interactions flow separation with plasma actuation[J]. Journal of Aerospace Power, 2018, 33(2): 364-371. (in Chinese) doi: 10.13224/j.cnki.jasp.2018.02.014
    [15] CORKE T C,POST M L,ORLOV D M. SDBD plasma enhanced aerodynamics: concepts,optimization and applications[J]. Progress in Aerospace Sciences,2007,43(7/8): 193-217.
    [16] XUE Ming,GAO Chao,XI Hengdong,et al. Vortices induced by a dielectric barrier discharge plasma actuator under burst-mode actuation[J]. AIAA Journal,2020,58(6): 2428-2441. doi: 10.2514/1.J057764
    [17] MING Xue,GAO Chao,FENG Liu,et al. Vortex of duty-cycled flow induced by dielectric-barrier-discharge plasma in quiescent air[R]. AIAA2018-1296,2018.
    [18] DURASIEWICZ C,SINGH A,LITTLE J C. A comparative flow physics study of Ns-DBD vs Ac-DBD plasma actuators for transient separation control on a NACA 0012 airfoil[R]. AIAA2018-1061,2018.
    [19] DEBIEN A. Single and multi-DBD plasma actuators based on wire HV electrode[R]. Belfast,UK: 30th International Conference on Phenomena in Ionized Gases,2011.
    [20] BERENDT A,PODLIŃSKI J,MIZERACZYK J. Elongated DBD with floating interelectrodes for actuators[J]. The European Physical Journal Applied Physics,2011,55(1): 13804. doi: 10.1051/epjap/2011100441
    [21] ABDOLLAHZADEH M,RODRIGUES F,PASCOA J C,et al. Numerical design and analysis of a multi-DBD actuator configuration for the experimental testing of ACHEON nozzle model[J]. Aerospace Science and Technology,2015,41: 259-273. doi: 10.1016/j.ast.2014.12.012
    [22] FORTE M,JOLIBOIS J,PONS J,et al. Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity: application to airflow control[J]. Experiments in Fluids,2007,43(6): 917-928. doi: 10.1007/s00348-007-0362-7
    [23] EBRAHIMI A,MOVAHHEDI M. Power improvement of NREL 5-MW wind turbine using multi-DBD plasma actuators[J]. Energy Conversion and Management,2017,146: 96-106. doi: 10.1016/j.enconman.2017.05.019
    [24] SUZEN Y,HUANG G,JACOB J,et al. Numerical simulations of plasma based flow control applications[R]. AIAA2005-4633,2005.
    [25] MOREAU E,DEBIEN A,BREUX J M,et al. Control of a turbulent flow separated at mid-chord along an airfoil with DBD plasma actuators[J]. Journal of Electrostatics,2016,83: 78-87. doi: 10.1016/j.elstat.2016.08.005
    [26] ERFANI R,ERFANI T,UTYUZHNIKOV S V,et al. Optimisation of multiple encapsulated electrode plasma actuator[J]. Aerospace Science and Technology,2013,26(1): 120-127. doi: 10.1016/j.ast.2012.02.020
    [27] MORALEV I,SHERBAKOVA V,SELIVONIN I,et al. Effect of the discharge constriction in DBD plasma actuator on the laminar boundary layer[J]. International Journal of Heat and Mass Transfer,2018,116: 1326-1340. doi: 10.1016/j.ijheatmasstransfer.2017.09.121
    [28] JUKES T,CHOI K S,JOHNSON G,et al. Turbulent drag reduction by surface plasma through spanwise flow oscillation[R]. AIAA2006-3693,2006.
    [29] WHALLEY R,CHOI K. Turbulent boundary-layer control with plasma spanwise travelling waves[J]. Experiments in Fluids,2014,55: 1-16.
    [30] 胡旭,高超,郝江南. AC和AC-DC两种电源对不同多级等离子体激励器的激励效果研究[J]. 电工技术学报,2018,33(增刊1): 241-249. HU Xu,GAO Chao,HAO Jiangnan. Study on the effect of different multi-DBD plasma actuators by AC power supply and AC-DC power supply[J]. Transactions of China Electrotechnical Society,2018,33(Sup 1): 241-249. (in Chinese

    HU Xu, GAO Chao, HAO Jiangnan. Study on the effect of different multi-DBD plasma actuators by AC power supply and AC-DC power supply[J]. Transactions of China Electrotechnical Society, 2018, 33(Sup 1): 241-249. (in Chinese)
    [31] 王玉玲,高超,郝江南,等. 不同类型多级等离子体激励器诱导气流的力学特性研究[J]. 航空工程进展,2015,6(3): 279-286. WANG Yuling,GAO Chao,HAO Jiangnan,et al. Investigation on mechanical properties of the airflow induced by different kinds of multi-DBD plasma actuators[J]. Advances in Aeronautical Science and Engineering,2015,6(3): 279-286. (in Chinese doi: 10.3969/j.issn.1674-8190.2015.03.003

    WANG Yuling, GAO Chao, HAO Jiangnan, et al. Investigation on mechanical properties of the airflow induced by different kinds of multi-DBD plasma actuators[J]. Advances in Aeronautical Science and Engineering, 2015, 6(3): 279-286. (in Chinese) doi: 10.3969/j.issn.1674-8190.2015.03.003
    [32] 周小旭. 等离子体EHD蠕动加速作用影响因素实验研究[J]. 科学技术与工程,2011,11(33): 8135-8139. ZHOU Xiaoxu. Experimental studies on influencing factors of plasma peristaltic EHD acceleration effect[J]. Science Technology and Engineering,2011,11(33): 8135-8139. (in Chinese doi: 10.3969/j.issn.1671-1815.2011.33.008

    ZHOU Xiaoxu. Experimental studies on influencing factors of plasma peristaltic EHD acceleration effect[J]. Science Technology and Engineering, 2011, 11(33): 8135-8139. (in Chinese) doi: 10.3969/j.issn.1671-1815.2011.33.008
    [33] SUZEN Y,HUANG G,ASHPIS D. Numerical simulations of flow separation control in low-pressure turbines using plasma actuators[R]. AIAA2007-937,2007.
    [34] 薛明,高超,刘峰,等. 非定常激励下等离子体DBD诱导涡特性研究[J]. 空气动力学学报,2019,37(1): 83-88. XUE Ming,GAO Chao,LIU Feng,et al. Characteristics of vortex induced by DBD plasma actuator under unsteady excitation in quiescent air[J]. Acta Aerodynamica Sinica,2019,37(1): 83-88. (in Chinese

    XUE Ming, GAO Chao, LIU Feng, et al. Characteristics of vortex induced by DBD plasma actuator under unsteady excitation in quiescent air[J]. Acta Aerodynamica Sinica, 2019, 37(1): 83-88. (in Chinese)
    [35] ARAM S,SHAN Hua,LEE Yutai. Application of an integrated flow and plasma actuation model to an airfoil[J]. AIAA Journal,2016,54(8): 2201-2210. doi: 10.2514/1.J054478
    [36] JEONG J,HUSSAIN F. On the identification of a vortex[J]. Journal of Fluid Mechanics,1995,285: 69-94. doi: 10.1017/S0022112095000462
  • 加载中
图(18)
计量
  • 文章访问数:  100
  • HTML浏览量:  58
  • PDF量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-30
  • 网络出版日期:  2023-11-01

目录

    /

    返回文章
    返回