留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

典型及衍生激波针构型的减阻降热流动特性

何坤 袁化成

何坤, 袁化成. 典型及衍生激波针构型的减阻降热流动特性[J]. 航空动力学报, 2024, 39(4):20220173 doi: 10.13224/j.cnki.jasp.20220173
引用本文: 何坤, 袁化成. 典型及衍生激波针构型的减阻降热流动特性[J]. 航空动力学报, 2024, 39(4):20220173 doi: 10.13224/j.cnki.jasp.20220173
HE Kun, YUAN Huacheng. Flow characteristics of drag and heat reduction of typical and derived aero-spikes configuration[J]. Journal of Aerospace Power, 2024, 39(4):20220173 doi: 10.13224/j.cnki.jasp.20220173
Citation: HE Kun, YUAN Huacheng. Flow characteristics of drag and heat reduction of typical and derived aero-spikes configuration[J]. Journal of Aerospace Power, 2024, 39(4):20220173 doi: 10.13224/j.cnki.jasp.20220173

典型及衍生激波针构型的减阻降热流动特性

doi: 10.13224/j.cnki.jasp.20220173
详细信息
    作者简介:

    何坤(2000-),男,硕士生,主要从事航空发动机进气预冷技术的研究

    通讯作者:

    袁化成(1979-),男,教授,博士,主要从事飞行器进排气系统技术研究。E-mail:yuanhuacheng@nuaa.edu.cn

  • 中图分类号: V211.3

Flow characteristics of drag and heat reduction of typical and derived aero-spikes configuration

  • 摘要:

    为探索激波针对超声速钝头飞行器进行减阻降热时的更优衍生构型,采用数值模拟方法对3种典型单扰流物构型、6种双扰流物构型、两类多扰流物构型和钝锥型激波针的流动特性进行了研究,认为加装激波针后的几何本质相当于“镂空式”的锥型钝头体。模拟结果显示:激波针头部扰流物相对直径较大时,减阻率随激波针相对长度的变化曲线没有明显的峰值点,而是存在一个变动幅度很小的峰值段,且相对直径在0.3~0.4左右时减阻效果最佳;典型激波针的最大减阻率约为50%,采用双扰流物构型时略有提升;中部增加多个扰流物时减阻率随扰流物数量增多而增大,最大减阻率超过60%,但气动加热问题较严重。相比而言,钝锥型激波针减阻降温的综合性能最好,最大减阻率可达60%左右,降温率约为7%。

     

  • 图 1  圆盘型激波针示意图

    Figure 1.  Diagram of disc-spike

    图 2  网格划分示意图、边界条件及横纵坐标布局

    Figure 2.  Grid division diagram, boundary conditions and layout of horizontal and vertical coordinates

    图 3  模拟所得圆盘型和球型激波针流场的数值纹影结果与实验纹影图的对比

    Figure 3.  Comparison of the numerical schlieren results of disc-spike and sphere-spike with the experimental schlieren figures

    图 4  半球型、球型及双锥型激波针示意图

    Figure 4.  Schematic diagrams of the hemisphere-spike, sphere-spike and bicone-spike

    图 5  不同d0/D值下半球型激波针nL/D的变化曲线

    Figure 5.  Variation curves of n with L/D of the hemisphere-spike with different d0/D values

    图 6  不同激波针nmaxd0/D的变化曲线

    Figure 6.  Variation curves of nmax with d0/D of different spikes

    图 7  半球型激波针在部分L/D值下的马赫数云图

    Figure 7.  Mach number contours of the hemisphere-spike with partial L/D values

    图 8  不同L/D值下钝头表面无量纲压力沿周向的分布曲线

    Figure 8.  Circumferential distribution curves of the dimensionless pressure on the blunt surface with different L/D values

    图 9  不同d0/D值下钝头表面温度沿周向的分布曲线

    Figure 9.  Circumferential distribution curves of the temperature on the blunt surface with different d0/D values

    图 10  6种双扰流物组合示意图

    Figure 10.  Schematic diagrams of six kinds of combinations of double flow interferents

    图 11  双扰流物型激波针nL2/D值的变化曲线

    Figure 11.  Variation curves of n with L2/D values of the spikes with double flow interferents

    图 12  不同L2/D值下双锥-半球型激波针的马赫数云图对比

    Figure 12.  Comparison of Mach number contours of the bicone-hemisphere-spike with different L2/D values

    图 13  不同L2/D值下双锥-半球型激波针的壁面无量纲压力分布曲线

    Figure 13.  Dimensionless wall pressure distribution curves of the bicone-hemisphere-spike with different L2/D values

    图 14  不同L2/D值下双锥-半球型激波针的钝头表面温度沿周向的分布曲线

    Figure 14.  Circumferential distribution curves of the temperature on the blunt surface of the bicone-hemisphere-spike with different L2/D values

    图 15  三半球型激波针示意图

    Figure 15.  Schematic diagram of the triple-hemisphere-spike

    图 16  三半球型激波针nL/D的变化曲线

    Figure 16.  Variation curve of n with L/D values of the triple-hemisphere-spike

    图 17  部分L/D值下三半球型激波针的马赫数云图

    Figure 17.  Mach number contours of the triple-hemisphere-spike with partial L/D values

    图 18  几种中部多扰流物构型示意图

    Figure 18.  Schematic diagrams of several kinds of spike configurations with multiple flow interferents in the middle

    图 19  半球型激波针及锥型钝头体示意图

    Figure 19.  Schematic diagram of the hemisphere-spike and conical blunt body

    图 20  多扰流物型激波针、半球型激波针及锥型钝头体的n

    Figure 20.  n of the spikes with multiple flow interferents, hemisphere-spike and conical blunt body

    图 21  多扰流物型激波针、半球型激波针及锥型钝头体的马赫数云图对比

    Figure 21.  Comparison of Mach number contours of the spikes with multiple flow interferents, hemisphere-spike and conical blunt body

    图 22  多扰流物型激波针、半球型激波针及锥型钝头体构型的壁面温度分布曲线

    Figure 22.  Wall temperature distribution curves of the spikes with multiple flow interferents, hemisphere-spike and conical blunt body

    图 23  钝锥型激波针示意图

    Figure 23.  Schematic diagram of the blunted cone-spike

    图 24  钝锥型与三半球型激波针nL/D值的变化曲线

    Figure 24.  Variation curves of n with L/D values of the blunted cone-spike and triple-hemisphere-spike

    表  1  各构型在不同d0/D值下的临界L/D区间

    Table  1.   Critical L/D extents of virous configurations with different d0/D values

    d0/D临界L/D区间
    半球型球型双锥型
    0.20.9~1.00.9~1.01.1~1.2
    0.251.1~1.21.0~1.11.2~1.3
    0.31.3~1.41.2~1.31.4~1.5
    0.351.4~1.51.4~1.51.6~1.7
    0.41.5~1.61.6~1.71.7~1.8
    0.51.8~1.91.9~2.02.0~2.1
    下载: 导出CSV

    表  2  各构型下的nmaxMa=3)

    Table  2.   nmaxMa=3) of virous configurations

    激波针构型nmax/%
    典型构型50左右(50.41)
    双扰流物构型50~55(53.64)
    头部多扰流物构型60左右(59.06)
    中部多扰流物构型60~65(63.59)
    钝锥构型60左右(59.85)
    下载: 导出CSV
  • [1] ALEXANDER S R. Results of tests to determine the effect of a conical wind shield on the drag of a bluff body at supersonic speeds[R]. NACA RM L6K08a,1947.
    [2] 李少勋,阎超. 带激波针的钝体高超声速绕流的数值模拟[R]. 长沙: 第十三届全国激波与激波管学术会议,2008.
    [3] CRAWFORD D H. Investigation of the flow over a spiked-nose hemisphere-cylinder[R]. NASA TN D-118,1959.
    [4] YAMAUCHI M,FUJⅡ K,TAMURA Y,et al. Numerical investigation of supersonic flow around a spiked blunt-body[R]. AIAA-93-0887,1993.
    [5] KALIMUTHU R,MEHTA R C,RATHAKRISHNAN E. Experimental investigation on spiked body in hypersonic flow[J]. The Aeronautical Journal,2008,112(1136): 593-598. doi: 10.1017/S0001924000002554
    [6] 李永红,高川,唐新武. 激波针气动特性及外形参数优化研究[J]. 兵工学报,2016,37(8): 1415-1420. LI Yonghong,GAO Chuan,TANG Xinwu. Drag reduction characteristics and design optimization of spikes[J]. Acta Armamentarii,2016,37(8): 1415-1420. (in Chinese doi: 10.3969/j.issn.1000-1093.2016.08.011

    LI Yonghong, GAO Chuan, TANG Xinwu. Drag reduction characteristics and design optimization of spikes[J]. Acta Armamentarii, 2016, 37(8): 1415-1420. (in Chinese) doi: 10.3969/j.issn.1000-1093.2016.08.011
    [7] SAHOO D,DAS S,KUMAR P,et al. Effect of spike on steady and unsteady flow over a blunt body at supersonic speed[J]. Acta Astronautica,2016,128: 521-533. doi: 10.1016/j.actaastro.2016.08.005
    [8] 何坤,袁化成. 典型激波针减阻降热特性及流动机理[J]. 航空动力学报,2022,37(5): 1064-1078. HE Kun,YUAN Huacheng. Drag and heat reduction characteristics and flow mechanism of typical aero-spikes[J]. Journal of Aerospace Power,2022,37(5): 1064-1078. (in Chinese

    HE Kun, YUAN Huacheng. Drag and heat reduction characteristics and flow mechanism of typical aero-spikes[J]. Journal of Aerospace Power, 2022, 37(5): 1064-1078. (in Chinese)
    [9] MOTOYAMA N,MIHARA K,MIYAJIMA R,et al. Thermal protection and drag reduction with use of spike in hypersonic flow[R]. AIAA 2001-1828,2001.
    [10] XUE Yuan,WANG Liang,FU Song. Drag reduction and aerodynamic shape optimization for spike-tipped supersonic blunt nose[J]. Journal of Spacecraft and Rockets,2018,55(3): 552-560. doi: 10.2514/1.A33621
    [11] HUANG Jie,YAO Weixing. Hypersonic drag reduction mechanism of a novel combinational spike and multi-opposing jets aerodynamic configuration[J]. Acta Astronautica,2020,171: 245-256. doi: 10.1016/j.actaastro.2020.03.009
    [12] YADAV R,GUVEN U. Aerothermodynamics of a hypersonic projectile with a double-disk aerospike[J]. The Aeronautical Journal,2013,117(1195): 913-928. doi: 10.1017/S0001924000008587
    [13] NARAYANA G,SELVARAJ S. Experimental investigation of heat transfer over double disk spike-blunt body at Mach 5.7[J]. Experimental Thermal and Fluid Science,2019,102: 452-466. doi: 10.1016/j.expthermflusci.2018.12.004
    [14] QIN Qihao,XU Jinglei. Role of aerodome in pulsation/oscillation control and aeroheating reduction[J]. Acta Astronautica,2019,162: 481-496. doi: 10.1016/j.actaastro.2019.05.030
    [15] SUNDARRAJ V,SUNDARRAJ K,KULKARNI P S. Thermo-Fluid analysis of supersonic flow over ballistic shaped bodies with multiple aero-disk spike configurations[J]. Acta Astronautica,2021,180: 292-304. doi: 10.1016/j.actaastro.2020.12.022
    [16] EGHLIMA Z,MANSOUR K,FARDIPOUR K. Heat transfer reduction using combination of spike and counterflow jet on blunt body at high Mach number flow[J]. Acta Astronautica,2018,143: 92-104. doi: 10.1016/j.actaastro.2017.11.012
    [17] 李珺,王俊峰,赵雅甜,等. 面向非设计工况的激波针-喷流复合构型研究[J]. 航空学报,2022,43(9): 125949. LI Jun,WANG Junfeng,ZHAO Yatian,et al. Research on combinational configuration of spike and multi-jets in off-design regimes[J]. Acta Aeronautica et Astronautica Sinica,2022,43(9): 125949. (in Chinese

    LI Jun, WANG Junfeng, ZHAO Yatian, et al. Research on combinational configuration of spike and multi-jets in off-design regimes[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 125949. (in Chinese)
    [18] SRULIJES J,GNEMMI P,RUNNE K,et al. High-pressure shock tunnel experiments and CFD calculations on spike-tipped blunt bodies[R]. AIAA 2002-2918,2002.
  • 加载中
图(24) / 表(2)
计量
  • 文章访问数:  98
  • HTML浏览量:  42
  • PDF量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-30
  • 网络出版日期:  2023-11-08

目录

    /

    返回文章
    返回