留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于适航符合性的短舱风扇一体化迎角与侧风特性

傅文广 郭重佳 孙鹏 陶立权

傅文广, 郭重佳, 孙鹏, 等. 基于适航符合性的短舱风扇一体化迎角与侧风特性[J]. 航空动力学报, 2024, 39(3):20220180 doi: 10.13224/j.cnki.jasp.20220180
引用本文: 傅文广, 郭重佳, 孙鹏, 等. 基于适航符合性的短舱风扇一体化迎角与侧风特性[J]. 航空动力学报, 2024, 39(3):20220180 doi: 10.13224/j.cnki.jasp.20220180
FU Wenguang, GUO Chongjia, SUN Peng, et al. Integrated attack angle and crosswind characteristics of nacelle-and-fan based on airworthiness compliance[J]. Journal of Aerospace Power, 2024, 39(3):20220180 doi: 10.13224/j.cnki.jasp.20220180
Citation: FU Wenguang, GUO Chongjia, SUN Peng, et al. Integrated attack angle and crosswind characteristics of nacelle-and-fan based on airworthiness compliance[J]. Journal of Aerospace Power, 2024, 39(3):20220180 doi: 10.13224/j.cnki.jasp.20220180

基于适航符合性的短舱风扇一体化迎角与侧风特性

doi: 10.13224/j.cnki.jasp.20220180
基金项目: 天津市多元投入基金项目青年项目(21JCQNJC00930)
详细信息
    作者简介:

    傅文广(1989-),男,讲师,博士,主要从事航空发动机气动热力学及适航技术研究

    通讯作者:

    孙鹏(1979-),男,教授、博士生导师,博士,主要从事航空发动机气动热力学与适航技术研究。E-mail:sp_hit@hotmail.com

  • 中图分类号: V231.3

Integrated attack angle and crosswind characteristics of nacelle-and-fan based on airworthiness compliance

  • 摘要:

    以某小型涡扇发动机为研究对象,采用数值模拟方法对0°、15°、25°迎角和±10、±20、±30 m/s的90°横向侧风条件下短舱风扇一体化的特性及流场进行研究。结果表明:随着迎角的增大,相同风速条件下逆向侧风对短舱进气道和风扇性能的负面影响更大,依据机动性、风速和喘振/失速特性的适航条款要求,得到迎角为25°时,短舱风扇一体化性能可承受的正、逆向侧风范围分别约为0~23 m/s和0~18 m/s,相应得到侧风速度为±30 m/s时,所允许的机动迎角范围分别约为0°~3°和0°~2°。

     

  • 图 1  发动机物理模型

    Figure 1.  Engine structure physical model

    图 2  计算网格

    Figure 2.  Computational grid

    图 3  网格无关性验证

    Figure 3.  Grid independence verification

    图 4  边界条件

    Figure 4.  Boundary conditions

    图 5  来流与侧风方向示意图

    Figure 5.  Schematic diagram of incoming flow and crosswind direction

    图 6  进气道壁面压力数值校核结果

    Figure 6.  Numerical verification results of inlet wall pressure

    图 7  风扇特性数值校核结果

    Figure 7.  Numerical verification results of fan characteristics

    图 8  进气道总压恢复系数特性

    Figure 8.  Characteristics of total pressure recovery coefficient of inlet

    图 9  AIP总压恢复系数云图

    Figure 9.  Total pressure coefficient contour of AIP

    图 10  风扇进口极限流线与速度流线

    Figure 10.  Fan inlet limit streamline and speed streamline

    图 11  风扇效率和压比特性(Ma=0.4)

    Figure 11.  Characteristics of fan efficiency and pressure ratio (Ma=0.4)

    图 12  风扇喘振裕度特性

    Figure 12.  Fan surge margin characteristics

    图 13  风扇99%叶高S1流面熵和相对马赫数分布

    Figure 13.  Entropy and relative Mach number distribution of fan 99% blade height S1 flow surface

    图 14  近失速工况风扇99%叶高S1流面相对马赫数和速度流线

    Figure 14.  Relative Mach number and velocity streamline of fan 99% blade height S1 flow surface near stall

    图 15  OGV总压损失系数沿叶高变化曲线

    Figure 15.  Variation curve of OGV total pressure loss coefficient along blade height

    图 16  OGV吸力面极限流线及出口密流(AOA为25°)

    Figure 16.  OGV suction surface limit streamline and outlet dense flow (AOA of 25°)

    表  1  风扇与OGV设计参数

    Table  1.   Design parameters of fan and OGV

    设计参数 数值
    风扇数 14
    转速/(r/min) 13069
    风扇叶顶间隙 0.5
    风扇展弦比 1.46
    OGV数 40
    总增压比 1.19
    下载: 导出CSV
  • [1] 李志平,朱星宇,张鹏,等. 侧风影响下航空发动机失速/喘振适航审定方法[J]. 航空动力学报,2020,35(7): 1549-1558. LI Zhiping,ZHU Xingyu,ZHANG Peng,et al. Aero-engine stall/surge airworthiness certification method under the influence of crosswind[J]. Journal of Aerospace Power,2020,35(7): 1549-1558. (in Chinese

    LI Zhiping, ZHU Xingyu, ZHANG Peng, et al. Aero-engine stall/surge airworthiness certification method under the influence of crosswind[J]. Journal of Aerospace Power, 2020, 35(7): 1549-1558. (in Chinese)
    [2] 中国民用航空局. 运输类飞机适航标准: CCAR25-R4[S]. 北京: 中国民用航空局,2011: 15-16.
    [3] 中国民用航空局. 航空发动机适航规定: CCAR33-R2[S]. 北京: 中国民用航空局,2011: 31.
    [4] 周淳,龚立锋,郭彬彬. 适航管理融入航空发动机研发流程初探[J]. 航空动力,2020(4): 53-55. ZHOU Chun,GONG Lifeng,GUO Binbin. Consideration on integrating airworthiness management into aero engine R&D process[J]. Aerospace Power,2020(4): 53-55. (in Chinese

    ZHOU Chun, GONG Lifeng, GUO Binbin. Consideration on integrating airworthiness management into aero engine R&D process[J]. Aerospace Power, 2020(4): 53-55. (in Chinese)
    [5] HALL C A,HYNES T P. Measurements of intake separation hysteresis in a model fan and nacelle rig[J]. Journal of Propulsion and Power,2006,22(4): 872-879. doi: 10.2514/1.18644
    [6] VUNNAM K,HOOVER R. Modeling of inlet distortion using a combined turbofan and nacelle inlet model during crosswind and low speed forward operation[R]. Columbia,UK: ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition,2011.
    [7] LIOU M S,LEE B J. Characterization of aerodynamic performance of boundary-layer-ingesting inlet under crosswind[R]. Copenhagen,Denmark: ASME Turbo Expo 2012: Turbine Technical Conference and Exposition,2012.
    [8] KENNEDY S,ROBINSON T,SPENCE S,et al. Computational investigation of inlet distortion at high angles of attack[J]. Journal of Aircraft,2014,51(2): 361-376. doi: 10.2514/1.C031789
    [9] CARNEVALE M,WANG F,GREEN J S,et al. Lip stall suppression in powered intakes[J]. Journal of Propulsion and Power,2016,32(1): 161-170. doi: 10.2514/1.B35811
    [10] CAO Teng,VADLAMANI N R,TUCKER P G,et al. Fan-intake interaction under high incidence[J]. Journal of Engineering for Gas Turbines and Power,2017,139(4): 041204. doi: 10.1115/1.4034701
    [11] 王成,李博,蔡明轩,等. 带风扇叶片的短舱进气道地面涡数值仿真[J]. 重庆理工大学学报: 自然科学,2018,32(7): 99-108. WANG Cheng,LI Bo,CAI Mingxuan,et al. Numerical simulations on nacelle inlet ground vortex with blades[J]. Journal of Chongqing University of Technology: Natural Science,2018,32(7): 99-108. (in Chinese

    WANG Cheng, LI Bo, CAI Mingxuan, et al. Numerical simulations on nacelle inlet ground vortex with blades[J]. Journal of Chongqing University of Technology: Natural Science, 2018, 32(7): 99-108. (in Chinese)
    [12] 陈晶晶,吴亚东,田杰,等. 侧风条件下进气道流场及地面吸入涡特征研究[J]. 航空动力学报,2019,34(1): 228-237. CHEN Jingjing,WU Yadong,TIAN Jie,et al. Research on the inlet flow field and ground vortex under crosswind condition[J]. Journal of Aerospace Power,2019,34(1): 228-237. (in Chinese

    CHEN Jingjing, WU Yadong, TIAN Jie, et al. Research on the inlet flow field and ground vortex under crosswind condition[J]. Journal of Aerospace Power, 2019, 34(1): 228-237. (in Chinese)
    [13] 贾惟,孔庆国,鞠鹏飞,等. 侧风条件下地面涡来源和气动特性的数值研究[J]. 航空动力学报,2019,34(2): 410-422. JIA Wei,KONG Qingguo,JU Pengfei,et al. Numerical study on source and aerodynamic characteristic of ground vortex under crosswind condition[J]. Journal of Aerospace Power,2019,34(2): 410-422. (in Chinese

    JIA Wei, KONG Qingguo, JU Pengfei, et al. Numerical study on source and aerodynamic characteristic of ground vortex under crosswind condition[J]. Journal of Aerospace Power, 2019, 34(2): 410-422. (in Chinese)
    [14] 任丁丁,王俊琦,杨柳,等. 侧风条件下短舱进气道地面涡数值模拟[J]. 航空科学技术,2021,32(2): 50-55. REN Dingding,WANG Junqi,YANG Liu,et al. Numerical simulation of ground vortex of nacelle inlet under crosswind conditions[J]. Aeronautical Science & Technology,2021,32(2): 50-55. (in Chinese

    REN Dingding, WANG Junqi, YANG Liu, et al. Numerical simulation of ground vortex of nacelle inlet under crosswind conditions[J]. Aeronautical Science & Technology, 2021, 32(2): 50-55. (in Chinese)
    [15] XIE Hairun,WU Yadong,WANG A,et al. Numerical investigation of inlet distortion for different rear mounted engine installations at taking-off conditions[C]//ASME Turbo Expo: Turbine Tech-nical Conference & Exposition. 2015,56628: V001T01A009.
    [16] 马建,常红,周宇穗,等. 尾吊布局民用飞机发动机侧风进气流场CFD数值模拟与分析[J]. 科技视界,2015(27): 346-347. MA Jian,CHANG Hong,ZHOU Yusui,et al. CFD numerical simulation and analysis of crosswind inlet flow field of civil aircraft engine with tail crane layout[J]. Science & Technology Vision,2015(27): 346-347. (in Chinese

    MA Jian, CHANG Hong, ZHOU Yusui, et al. CFD numerical simulation and analysis of crosswind inlet flow field of civil aircraft engine with tail crane layout[J]. Science & Technology Vision, 2015(27): 346-347. (in Chinese)
    [17] 刘凯礼,孙一峰,钟园,等. 民用飞机进气道的侧风畸变研究[J]. 航空动力学报,2015,30(2): 289-296. LIU Kaili,SUN Yifeng,ZHONG Yuan,et al. Research on inlet distortion under crosswind for civil aircraft[J]. Journal of Aerospace Power,2015,30(2): 289-296. (in Chinese

    LIU Kaili, SUN Yifeng, ZHONG Yuan, et al. Research on inlet distortion under crosswind for civil aircraft[J]. Journal of Aerospace Power, 2015, 30(2): 289-296. (in Chinese)
    [18] 代小强,张云,黄强,等. 横向侧风及反推气流对安装状态下发动机进口流场影响的数值研究[J]. 装备环境工程,2020,17(11): 90-95. DAI Xiaoqiang,ZHANG Yun,HUANG Qiang,et al. Numerical investigation on influence of vertical crosswind and reverser flow to engine inlet flow field under installation[J]. Equipment Environmental Engineering,2020,17(11): 90-95. (in Chinese

    DAI Xiaoqiang, ZHANG Yun, HUANG Qiang, et al. Numerical investigation on influence of vertical crosswind and reverser flow to engine inlet flow field under installation[J]. Equipment Environmental Engineering, 2020, 17(11): 90-95. (in Chinese)
    [19] 陈俊,章欣涛,冯丽娟. 民用航空涡轮发动机短舱高速风洞试验[J]. 航空动力学报,2019,34(7): 1416-1424. CHEN Jun,ZHANG Xintao,FENG Lijuan. High speed wind tunnel test of civil aviation turbine engine nacelle[J]. Journal of Aero-space Power,2019,34(7): 1416-1424. (in Chinese

    CHEN Jun, ZHANG Xintao, FENG Lijuan. High speed wind tunnel test of civil aviation turbine engine nacelle[J]. Journal of Aero-space Power, 2019, 34(7): 1416-1424. (in Chinese)
    [20] 翁小侪. 一种腹下S弯进气道地面和低速大攻角状态下气动特性研究[D]. 南京: 南京航空航天大学,2008. WENG Xiaochai. Study of the flow in a ventral S-shaped inlet under ground running and at high incidence and low speed[D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2008. (in Chinese

    WENG Xiaochai. Study of the flow in a ventral S-shaped inlet under ground running and at high incidence and low speed[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2008. (in Chinese)
    [21] 齐旻,王占学,周莉,等. 唇口几何参数对短舱进气道性能影响数值研究[J]. 推进技术,2020,41(9): 2021-2030. QI Min,WANG Zhanxue,ZHOU Li,et al. Numerical study on effects of lip geometric parameters on performance of nacelle inlet[J]. Journal of Propulsion Technology,2020,41(9): 2021-2030. (in Chinese

    QI Min, WANG Zhanxue, ZHOU Li, et al. Numerical study on effects of lip geometric parameters on performance of nacelle inlet[J]. Journal of Propulsion Technology, 2020, 41(9): 2021-2030. (in Chinese)
    [22] RICHARD J R,WILLIAM K A. A wind tunnel investigation of three NACA 1-series inlets at Mach numbers up to 0.92[R]. NASA Technical Memorandum 110300,1996.
    [23] 史磊,杨光,林文俊. 前缘侵蚀对风扇转子叶片气动特性的影响机理[J]. 航空学报,2019,40(10): 123007. SHI Lei,YANG Guang,LIN Wenjun. Influence mechanism of leading-edge erosion on aerodynamic performance of fan rotor blade[J]. Acta Aeronautica et Astronautica Sinica,2019,40(10): 123007. (in Chinese

    SHI Lei, YANG Guang, LIN Wenjun. Influence mechanism of leading-edge erosion on aerodynamic performance of fan rotor blade[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10): 123007. (in Chinese)
    [24] 刘大响,叶培梁,赵景芸,等. 航空发动机设计手册: 第七册 进排气装置[M]. 北京: 航空工业出版社,2000.
    [25] 程不时,李云军,王智宇,等. 飞机设计手册: 第5册 民用飞机总体设计[M]. 北京: 航空工业出版社,2005.
    [26] 中国民用航空局. 航空发动机审定: AC-33-AA-2021[S]. 北京: 中国民用航空局,2021.
    [27] 吴超. 安全科学原理[M]. 北京: 机械工业出版社,2018.
    [28] SUDER K L,CELESTINA M L. Experimental and computational investigation of the tip clearance flow in a transonic axial compressor rotor[J]. Journal of Turbomachinery,1996,118(2): 218-229. doi: 10.1115/1.2836629
    [29] HAH C,RABE D C. Role of tip clearance flows on flow instability in axial flow compressors[R]. ISABE 2001-1223,2001.
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  90
  • HTML浏览量:  42
  • PDF量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-31
  • 网络出版日期:  2023-11-01

目录

    /

    返回文章
    返回