留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

叶尖定时技术在转子叶片故障排除中的应用

刘美茹 郜伟强 范毅 郭宇星 焦江昆 乔百杰

刘美茹, 郜伟强, 范毅, 等. 叶尖定时技术在转子叶片故障排除中的应用[J]. 航空动力学报, 2022, 37(12):2818-2829 doi: 10.13224/j.cnki.jasp.20220192
引用本文: 刘美茹, 郜伟强, 范毅, 等. 叶尖定时技术在转子叶片故障排除中的应用[J]. 航空动力学报, 2022, 37(12):2818-2829 doi: 10.13224/j.cnki.jasp.20220192
LIU Meiru, GAO Weiqiang, FAN Yi, et al. Application of blade tip timing technology in rotor blade fault elimination[J]. Journal of Aerospace Power, 2022, 37(12):2818-2829 doi: 10.13224/j.cnki.jasp.20220192
Citation: LIU Meiru, GAO Weiqiang, FAN Yi, et al. Application of blade tip timing technology in rotor blade fault elimination[J]. Journal of Aerospace Power, 2022, 37(12):2818-2829 doi: 10.13224/j.cnki.jasp.20220192

叶尖定时技术在转子叶片故障排除中的应用

doi: 10.13224/j.cnki.jasp.20220192
基金项目: 国家自然科学基金(52075414); 中国航发四川燃气涡轮研究院稳定支持项目
详细信息
    作者简介:

    刘美茹(1987-),女,高级工程师,博士生,主要从事航空发动机振动测试技术的研究

    通讯作者:

    乔百杰(1985-),男,副教授、博士生导师,博士,主要从事航空发动机叶片健康监测的研究。E-mail:qiao1224@xjtu.edu.cn

  • 中图分类号: V232.4;TH140.1

Application of blade tip timing technology in rotor blade fault elimination

  • 摘要:

    介绍了基于叶尖定时的非接触振动测试系统的基本原理和数据分析方法,并将之应用于某型航空发动机压气机第5级转子叶片掉块故障分析。通过优化传感器的轴向分布和周向布局,分别测量3类叶片(原型、优化和削角)前缘和尾缘位置高阶振动信息,包括共振转速、频率和幅值。分别对比原型、优化叶片的前缘和尾缘测试结果,每类叶片的前缘和尾缘位置的共振幅值基本一致;对比3类叶片的前缘位置振动参数,优化叶片的共振转速较原型叶片有所增加,削角叶片的共振转速较优化叶片有所增加;对比原型、优化叶片尾缘位置振动参数,优化叶片的共振转速较原型叶片有所增加。可以判断:原型叶片发生疲劳断裂主要原因是其在工作转速4200 r/min出现高阶模态共振现象;优化叶片的共振转速较原型叶片增加40~80 r/min,叶片故障率降低,而削角叶片的共振转速较原型叶片增加140~180 r/min,且对应尾缘位置削角,可以排除叶片掉块故障。

     

  • 图 1  非接触振动测量系统工作原理

    Figure 1.  Principle of non-contact vibration measurement system

    图 2  非接触振动测量系统结构示意图

    Figure 2.  Schematic diagram of non-contact vibration measurement system

    图 3  理论模型叶片坎贝尔图

    Figure 3.  Campbell diagram of the original profile blade

    图 4  原型叶片第4阶振型图

    Figure 4.  The fourth displacement mode shape of the original blade

    图 5  原型叶片第8阶振型图

    Figure 5.  The eighth displacement mode shape of the original blade

    图 6  优化模型叶片坎贝尔图

    Figure 6.  Campbell diagram of the optimized blade

    图 7  优化叶片第4阶振型图

    Figure 7.  The fourth displacement mode shape of the optimized blade

    图 8  优化叶片第8阶振型图

    Figure 8.  The eighth displacement mode shape of the optimized blade

    图 9  削角模型叶片坎贝尔图

    Figure 9.  Campbell diagram of the chamfer blades

    图 10  削角叶片第4阶振型图

    Figure 10.  The fourth displacement mode shape of the chamfer blade

    图 11  削角叶片第8 阶振型图

    Figure 11.  The eighth displacement mode shape of the chamfer blade

    图 12  M6型光纤传感器

    Figure 12.  M6 optical fiber sensor

    图 13  测点位置AB示意

    Figure 13.  Position of measured point A and B

    图 14  最佳传感器位置

    Figure 14.  Optimal sensor placement

    图 15  传感器周向安装角度

    Figure 15.  Circumferential location of the sensors

    图 16  一转一个脉冲基准实现方法

    Figure 16.  Realization method of once-per-revolution

    图 17  原型叶片前缘共振结果(转速为2450 r/min)

    Figure 17.  Vibration results of leading edge of original profile blades (speed for 2450 r/min)

    图 18  原型叶片尾缘共振结果(转速为2450 r/min)

    Figure 18.  Vibration results of trailing edge of original profile blades (speed for 2450 r/min)

    图 19  原型叶片前缘共振结果(转速为4200 r/min)

    Figure 19.  Vibration results of leading edge of original profile blades (speed for 4200 r/min)

    图 20  原型叶片尾缘共振结果(转速为4200 r/min)

    Figure 20.  Vibration results of trailing edge of original profile blades (speed for 4200 r/min)

    图 21  优化叶片前缘叶片共振分析结果(转速为2470 r/min)

    Figure 21.  Vibration results of leading edge of optimized blades (speed for 2470 r/min)

    图 22  优化叶片尾缘叶片共振分析结果(转速为2470 r/min)

    Figure 22.  Vibration results of trailing edge of optimized blades for (speed for 2470 r/min)

    图 23  优化叶片前缘共振分析结果(转速为4250 r/min)

    Figure 23.  Vibration results of leading edge of optimized blades (speed for 4250 r/min)

    图 24  优化叶片尾缘叶片共振分析结果(转速为4250 r/min)

    Figure 24.  Vibration results of trailing edge of optimized blades (speed for 4250 r/min)

    图 25  削角叶片前缘共振结果(转速为2500 r/min)

    Figure 25.  Vibration results of leading edge of chamferblades (speed for 2500 r/min)

    图 26  削角叶片前缘共振结果(转速为4350 r/min)

    Figure 26.  Vibration results of leading edge with chamfer blades (speed for 4350 r/min)

    图 27  第5级转子叶片振动测试结果(共振转速在2450 r/min附近)

    Figure 27.  Vibration testing results of the fifth stage rotor blade (resonance speed near 2450 r/min)

    图 28  第5级转子叶片振动测试结果(共振转速在4250 r/min附近)

    Figure 28.  Vibration testing results of the fifth stage rotor blade (resonance speed near 4250 r/min)

    表  1  原型、优化和削角的叶片测试结果

    Table  1.   The results about the original, optimized and chamfer blades

    叶片状态测试位置共振转速/(r/min)共振频率/Hz激励阶次拾取的最大振动
    幅值/mm
    转速增加
    (对比原型)(r/min)
    原型前缘4200~43205600~5750800.18
    尾缘4175~43505575~5775800.145
    优化前缘4240~44005660~5850800.1940~80
    尾缘4240~44005660~5850800.15550~65
    削角前缘4340~45005800~6000800.15140~180
    下载: 导出CSV
  • [1] 杨俊,白哲,祁圣英,等. 压气机转子叶片掉块故障研究[J]. 燃气涡轮试验与研究,2021,34(5): 6-10, 43. YANG Jun,BAI Zhe,QI Shengying,et al. Fracture fault of the compressor rotor blade[J]. Gas Turbine Experiment and Research,2021,34(5): 6-10, 43. (in Chinese doi: 10.3969/j.issn.1672-2620.2021.05.002
    [2] 刘美茹,朱靖,梁恩波,等. 基于叶尖定时的航空发动机压气机叶片振动测量[J]. 航空动力学报,2019,34(9): 1895-1904. LIU Meiru,ZHU Jing,LIANG Enbo,et al. Vibration measurement on compressor rotor blades of aero-engine based on tip-timing[J]. Journal of Aerospace Power,2019,34(9): 1895-1904. (in Chinese doi: 10.13224/j.cnki.jasp.2019.09.006
    [3] JOUNG K K, KANG S C, PAENG K S, et al. Analysis of vibration of the turbine blades using non-intrusive stress measurement system[C]//Proceedings of the ASME 2006 Power Conference. Atlanta, Georgia, US: ASME, 2006: 391-397.
    [4] GIOVANNI R,GIUSEPPE B,TERESA M. Synchronous vibration parameters identification by tip timing measurements[J]. Mechanics Research Communications,2017,79: 7-14. doi: 10.1016/j.mechrescom.2016.10.006
    [5] DIAMOND D H,HEYNS P S,OBERHOLSTERA J. Improved blade tip timing measurements during transient conditions using a state space model[J]. Mechanical Systems and Signal Processing,2019,122: 555-579. doi: 10.1016/j.ymssp.2018.12.033
    [6] DU TOIT R G,DIAMOND D H,HEYNS P S. A stochastic hybrid blade tip timing approach for the identification and classification of turbomachine blade damage[J]. Mechanical Systems and Signal Processing,2019,121: 389-411. doi: 10.1016/j.ymssp.2018.11.032
    [7] 李孟麟, 段发阶, 欧阳涛, 等. 基于叶尖定时的旋转机械叶片振动频率辨识ESPRIT方法[J]. 振动与冲击, 2010, 29(12): 18-21, 235.

    LI Menglin, DUAN Fajie, OUYANG Tao, et al. ESPRIT method for blade vibration frequency identification in rotating machinery based on blade tip-timing measurement[J]. Journal of Vibration and Shock, 2010, 29(12): 18-21, 235. (in Chinese)
    [8] 欧阳涛, 段发阶, 李孟麟, 等. 旋转叶片异步振动全相位FFT辨识方法[J]. 振动工程学报, 2011, 24(3): 268-273.

    OUYANG Tao, DUAN Fajie, LI Menglin, et al. A method for identifying rotating blade asynchronous vibration by all-phase FFT [J]. Journal of Vibration Engineering, 2011, 24(3): 268-273. (in Chinese)
    [9] LIN J,HU Z,CHEN Z,et al. Sparse reconstruction of blade tip-timing signals for multi-mode blade vibration monitoring[J]. Mechanical Systems and Signal Processing,2016,81: 250-258. doi: 10.1016/j.ymssp.2016.03.020
    [10] XU J,QIAO B,LIU J,et al. Sparse reconstruction for blade tip timing signal using generalized minimax-concave penalty[J]. Mechanical Systems and Signal Processing,2021,161: 1-18.
    [11] 许敬晖,乔百杰,滕光蓉,等. 基于压缩感知的叶端定时信号参数辨识方法[J]. 航空学报,2021,42(5): 220-230. XU Jinghui,QIAO Baijie,TENG Guangrong,et al. Parameter identification of blade tip timing signal using compressed sensing[J]. Acta Aeronautica et Astronautica Sinica,2021,42(5): 220-230. (in Chinese
    [12] 敖春燕,乔百杰,刘美茹,等. 基于非接触式测量的旋转叶片动应变重构方法[J]. 航空动力学报,2020,35(3): 569-580. AO Chunyan,QIAO Baijie,LIU Meiru,et al. Dynamic strain reconstructing method of rotating blades based on no-contact measurement[J]. Journal of Aerospace Power,2020,35(3): 569-580. (in Chinese doi: 10.13224/j.cnki.jasp.2020.03.013
    [13] AO C,QIAO B,CHEN L,et al. Blade dynamic strain non-intrusive measurement using L1/2-norm regularization and transmissibility[J]. Measurement,2022,190: 1-11.
    [14] 陈雷,乔百杰,敖春燕,等. 基于叶端定时的转子叶片动应变重构不确定性量化[J]. 航空动力学报,2022,37(7): 1456-1468. CHEN Lei,QIAO Baijie,AO Chunyan,et al. Uncertainty quantification of rotor blade dynamic strain reconstruction based on blade tip timing[J]. Journal of Aerospace Power,2022,37(7): 1456-1468. (in Chinese doi: 10.13224/j.cnki.jasp.20210275
    [15] LIU Z,DUAN F,NIU G,et al. An improved circumferential Fourier fit (CFF) method for blade tip timing measurements[J]. Applied Sciences,2020,10(11): 1-20.
    [16] 欧阳涛. 基于叶尖定时的旋转叶片振动检测及参数辨识技术[D]. 天津: 天津大学, 2011.

    OUYANG Tao. Rotating blade vibration detection and parameters identification technique using blade tip-timing[D]. Tianjin: Tianjin University, 2011. (in Chinese)
    [17] DIAMOND D H,STEPHAN HEYNS P. A novel method for the design of proximity sensor configuration for rotor blade tip timing[J]. Journal of Vibration and Acoustics,2018,140(6): 1-8.
    [18] XU J, QIAO B, YANG Z, et al. Optimal placement of blade tip timing sensors considering multi-mode vibration using evolutionary algorithms[C]//2020 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD). Xi’an: IEEE, 2020: 367-372.
  • 加载中
图(28) / 表(1)
计量
  • 文章访问数:  175
  • HTML浏览量:  105
  • PDF量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-04
  • 网络出版日期:  2022-11-07

目录

    /

    返回文章
    返回