留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

叶片加工偏差对叶栅临界攻角定性影响

李相君 鲁庆 尤付浩 朱政宇 董杰忠

李相君, 鲁庆, 尤付浩, 等. 叶片加工偏差对叶栅临界攻角定性影响[J]. 航空动力学报, 2022, 38(X):1-14 doi: 10.13224/j.cnki.jasp.20220202
引用本文: 李相君, 鲁庆, 尤付浩, 等. 叶片加工偏差对叶栅临界攻角定性影响[J]. 航空动力学报, 2022, 38(X):1-14 doi: 10.13224/j.cnki.jasp.20220202
LI Xiangjun, LU Qing, YOU Fuhao, et al. Qualitative influence of blade machining deviation on cascade critical angle of attack[J]. Journal of Aerospace Power, 2022, 38(X):1-14 doi: 10.13224/j.cnki.jasp.20220202
Citation: LI Xiangjun, LU Qing, YOU Fuhao, et al. Qualitative influence of blade machining deviation on cascade critical angle of attack[J]. Journal of Aerospace Power, 2022, 38(X):1-14 doi: 10.13224/j.cnki.jasp.20220202

叶片加工偏差对叶栅临界攻角定性影响

doi: 10.13224/j.cnki.jasp.20220202
基金项目: 国家自然科学基金青年项目(51906027); 辽宁省博士科研启动基金计划项目(2019-BS-027);中央高校基本科研业务费专项资金资助(3132020112); 国家科技重大专项(J2019-Ⅰ-0011)
详细信息
    作者简介:

    李相君(1989-),男,副教授、硕士生导师,博士,主要从事叶轮机械气动热力学以及加工误差相关的研究

    通讯作者:

    鲁庆(1994-),女,硕士生,主要从事加工误差对压气机性能影响研究。E-mail:lu18438606272@163.com

  • 中图分类号: V231.3

Qualitative influence of blade machining deviation on cascade critical angle of attack

  • 摘要:

    为了研究叶片加工偏差与压气机稳定性的关系,建立常用加工精度与压气机工作范围的量化关联,本文初步以多级高负荷轴流压气机级二级静子叶中截面为研究对象,构造了一种叶片表面几何不确定性降阶模型,并在三种常用加工精度下生成偏差叶型数据库。结合神经网络预测不确定性输入变量与叶栅临界攻角范围的关系,最终使用伪蒙特卡洛方法生成大量样本并开展统计学分析。结果表明:相比于原型,引入加工偏差使叶栅正临界攻角下降,负临界攻角上升,因此叶栅临界攻角范围下降,气动性能比原型更加恶化;以正临界攻角为例,当加工精度由2级提升到1级时,正临界攻角的均值由7.4858°上降至7.5571°,且叶片敏感部位由整个叶片区域变为前缘以及前半弦长,其轮廓度增减对临界攻角的影响趋势亦发生改变。由于上述分析所得均为统计学量化结果,因此本文研究结论将为今后设计优化三维叶栅或压气机转子提供理论依据,进一步节约加工成本。

     

  • 图 1  二维叶片型线法向加工偏差示意图

    Figure 1.  Schematic diagram of normal machining deviation of 2D blade profile

    图 2  几何气动参数定义及计算网格示意图

    Figure 2.  Geometric aerodynamic parameter definition and computational grid diagram

    图 3  数值结果和实验结果对比

    Figure 3.  Numerical results are compared with the experimental results

    图 4  前10个特征值分布

    Figure 4.  Distribution of the first 10 eigenvalues

    图 5  神经网络基本结构

    Figure 5.  Basic structure of neural network

    图 6  计算结果与预测结果对比图

    Figure 6.  Comparison of calculated results and predicted results

    图 7  叶表不同特征点处的轮廓度偏差分布

    Figure 7.  Profile deviation distribution at different feature points of blade surface

    图 8  损失源所在区域划分

    Figure 8.  The integral region of the loss sources

    图 9  不同加工精度下负临界攻角的统计直方图

    Figure 9.  Statistical histogram of negative critical angle of attack under different machining accuracy

    图 10  负临界攻角的均值随加工精度变化

    Figure 10.  Mean value of negative critical Angle of attack varies with machining accuracy

    图 11  负临界攻角设计余量随加工精度变化

    Figure 11.  Design allowance of negative critical Angle of attack varies with machining accuracy

    图 12  不同加工精度下正临界攻角的统计直方图

    Figure 12.  Statistical histogram of positive critical angle of attack under different machining accuracy

    图 13  正临界攻角的均值随加工精度变化

    Figure 13.  Mean value of positive critical Angle of attack varies with machining accuracy

    图 14  正临界攻角设计余量随加工精度变化

    Figure 14.  Design allowance of positive critical angle of attack varies with machining accuracy

    图 15  不同精度下几何参数对临界攻角的敏感性

    Figure 15.  Sensitivity of geometric parameters to critical angle of attack under different accuracy

    表  1  叶栅几何参数与气动参数

    Table  1.   Cascade geometry parameters and aerodynamic parameters

    参数数值
    叶高h/mm100
    弦长C/mm50
    轴向弦长Ca/mm48.3
    叶距l/mm29.1
    进口几何角β1k/(º)37.2
    出口几何角β2k/(º)10.6
    安装角γ/(º)14.8
    下载: 导出CSV

    表  2  所取3种精度下的轮廓度公差带

    Table  2.   Tolerance zones of the three precision profiles are taken

    精度等级边缘/mm叶中/mm
    HB5647中1级精度0.060.1
    HB5647中2级精度0.080.13
    精密加工0.050.05
    下载: 导出CSV

    表  3  测试集各输出性能参数的r2Erms

    Table  3.   r2 and Erms values of each output performance parameter in the test set

    输出参数r2Erms
    最小总压损失系数0.9052540.020319
    正临界攻角0.9940520.002794
    负临界攻角0.9994490.009195
    下载: 导出CSV

    表  4  叶栅通道损失源分析

    Table  4.   Loss sources of the cascade

    ζsourceζuζFRIζpζd
    Case10.00450.01410.000040.0047
    Case20.00510.01490.000060.0056
    Case30.00600.01930.000070.0027
    Case40.00620.02230.000060.0038
    下载: 导出CSV
  • [1] 郭正涛,楚武利,姬田园,等. 端壁倒圆半径误差对高负荷静叶栅性能影响的不确定性分析[J]. 航空动力学报,2021,36(10): 2173-2185.

    GUO Zhengtao,CHU Wuli,JI Tianyuan,et al. Uncertainty analysis of the effect of endwall radius error on the performance of high load static cascade[J]. Journal of Aerospace Power,2021,36(10): 2173-2185. (in Chinese)
    [2] 郭正涛,楚武利,晏松,等. 加工误差对压气机叶栅气动性能及稳定性影响的数据挖掘[J]. 推进技术,2022,43(3): 133-145. doi: 10.13675/j.cnki.tjjs.200576

    GUO Zhengtao,CHU Wuli,YAN Song,et al. Data mining of influence of machining error on aerodynamic performance and stability of compressor Cascade[J]. Propulsion Technology,2022,43(3): 133-145. (in Chinese) doi: 10.13675/j.cnki.tjjs.200576
    [3] GARZON V E, DARMOFAL D L. On the aerodynamic design of compressor airfoils for robustness under geometric uncertainty[C]// ASME Turbo Expo 2004: Power for Land, Sea, and Air. Vienna, Austria: ASME, 2004: 191-202.
    [4] ROELKE R J,HAAS J E. The effect of rotor blade thickness and surface finish on the performance of a small axial flow turbine[J]. Journal of Engineering for Power,1983,105(2): 377-382. doi: 10.1115/1.3227426
    [5] 刘业胜,曹玮,郭福水,等. 钛合金空心风扇叶片加工误差对其性能影响的初步分析[J]. 航空制造技术,2013(16): 58-64. doi: 10.3969/j.issn.1671-833X.2013.16.010

    LIU Yesheng,CAO Wei,GUO Fushui,et al. Preliminary analysis of the effect of machining error on performance of hollow fan blade of titanium alloy[J]. Aeronautical Manufacturing Technology,2013(16): 58-64. (in Chinese) doi: 10.3969/j.issn.1671-833X.2013.16.010
    [6] AHLFELD R, MONTOMOLI F. A single formulation for uncertainty propagation in turbomachinery: SAMBA PC[R]. ASME Paper GT-2016-56573, 2016.
    [7] AHLFELD R. A data-driven uncertainty quantification method for scarce data and rare events[D]. London: Aeronautical Engineering of Imperial College, 2017.
    [8] VOIGT P, HÖGNER L, FIEDLER B, et al. Comprehensive geometric description of manufacturing scatter of high pressure turbine nozzle guide vanes for probabilistic CFD analysis[R]. ASME Paper GT-2018 -76723, 2018.
    [9] JAN K,IVAN V,TOAL D J,et al. Robust turbine blade optimization in the face of real geometric variations[J]. Journal of Propulsion and Power,2018,34(6): 1479-1493. doi: 10.2514/1.B37091
    [10] RAZAALY N,PERSICO G,CONGEDO P M. Impact of geometric, operational, and model uncertainties on the nonIdeal flow through a supersonic ORC turbine cascade[J]. Energy,2019,169: 213-227. doi: 10.1016/j.energy.2018.11.100
    [11] 颜勇,祝培源,宋立明,等. 基于非平稳高斯过程的叶栅加工误差不确定性量化[J]. 推进技术,2017,38(8): 1767-1775.

    YAN Yong,ZHU Peiyuan,SONG Liming,et al. Uncertainty quantization of cascade machining error based on non-stationary Gaussian process[J]. Journal of Propulsion Technology,2017,38(8): 1767-1775. (in Chinese)
    [12] LUO J Q,LIU F. Statistical evaluation of performance impact of manufacturing variability by an adjoint method[J]. Aerospace Science and Technology,2018,77: 471-484. doi: 10.1016/j.ast.2018.03.030
    [13] WANG X J,ZOU Z P. Uncertainty analysis of impact of geometric variations on turbine blade performance[J]. Energy,2019,176: 67-80. doi: 10.1016/j.energy.2019.03.140
    [14] 刘佳鑫,于贤君,孟德君,等. 高压压气机出口级叶型加工偏差特征及其影响[J]. 航空学报,2021,42(2): 348-364.

    LIU Jiaxin,YU Xianjun,MENG Dejun,et al. Characteristics and influence of machining deviation of outlet profile of high pressure compressor[J]. Acta Aeronautica et Astronautica Sinica,2021,42(2): 348-364. (in Chinese)
    [15] GARZON V E. Probability aerothermal design of compressor airfoils[D]. Cambridge, Massachusetts: Massachusetts Institute of Technology, 2003.
    [16] CHEN H, WANG Q, HU R, et al. Conditional sampling and experiment design for quantifying manufacturing error of transonic airfoil[R]. AIAA-2011-658, 2011.
    [17] 蔡雨桐,高丽敏,马驰,等. 基于NIPC的压气机叶片加工偏差不确定性分析[J]. 工程热物理学报,2017,38(3): 490-497.

    CAI Yutong,GAO Limin,MA Chi,et al. Uncertainty analysis of compressor blade Machining Deviation based on NIPC[J]. Journal of Engineering Thermophysics,2017,38(3): 490-497. (in Chinese)
    [18] 高丽敏,蔡雨桐,徐浩亮,等. 压气机叶片加工偏差影响不确定分析[J]. 航空动力学报,2017,32(9): 2253-2259.

    GAO Limin,CAI Yutong,XU Haoliang,et al. Uncertainty analysis of influence of compressor blade machining deviation[J]. Journal of Aerospace Power,2017,32(9): 2253-2259. (in Chinese)
    [19] JU Y P,LIU Y M,JIANG W,et al. Aerodynamic analysis and design optimization of a centrifugal compres-sor impeller considering realistic manufacturing uncertain-ties[J]. Aerospace Science and Technology,2021,115(10): 1-16.
    [20] MA Yuchen, TENG Jinfang, ZHU Mingmin, et al. Non-axiaymmetric endwall contouring in a linear compressor cascade [C]// ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. New York: ASME, 2020: 5-8.
    [21] GOODHAND M N, MILLER R J, LUNG H W. The sensitivity of 2D compressor incidence range to in-service geometric variation[C]//ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. New York: ASME, 2012: 159-170.
    [22] CHU W,LI X,WU Y,et al. Reduction of end wall loss in axial compressor by using non-axisymmetric profiled end wall: A new design approach based on end wall velocity modification[J]. Aerospace Science and Technology,2016,55: 76-91. doi: 10.1016/j.ast.2016.05.011
    [23] 李相君,董杰忠,崔义强,等. 扩压叶栅角区-吸力面造型设计及流动控制机理[J]. 航空动力学报,2020,35(12): 2642-2653.

    LI Xiangjun,DONG Jiezhong,CUI Yiqiang,et al. Modeling design of suction surface and flow control mechanism of diffuser cascade[J]. Journal of Aerospace Power,2020,35(12): 2642-2653. (in Chinese)
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  60
  • HTML浏览量:  5
  • PDF量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-11
  • 网络出版日期:  2023-01-04

目录

    /

    返回文章
    返回