留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同反应机理的火焰面模型模拟射流火焰

王方 蔡江涛 张健 金捷

王方, 蔡江涛, 张健, 等. 不同反应机理的火焰面模型模拟射流火焰[J]. 航空动力学报, 2022, 37(11):2465-2478 doi: 10.13224/j.cnki.jasp.20220204
引用本文: 王方, 蔡江涛, 张健, 等. 不同反应机理的火焰面模型模拟射流火焰[J]. 航空动力学报, 2022, 37(11):2465-2478 doi: 10.13224/j.cnki.jasp.20220204
WANG Fang, CAI Jiangtao, ZHANG Jian, et al. Different reaction mechanism on simulations of jet flames using flamelet model[J]. Journal of Aerospace Power, 2022, 37(11):2465-2478 doi: 10.13224/j.cnki.jasp.20220204
Citation: WANG Fang, CAI Jiangtao, ZHANG Jian, et al. Different reaction mechanism on simulations of jet flames using flamelet model[J]. Journal of Aerospace Power, 2022, 37(11):2465-2478 doi: 10.13224/j.cnki.jasp.20220204

不同反应机理的火焰面模型模拟射流火焰

doi: 10.13224/j.cnki.jasp.20220204
基金项目: 国家自然科学基金(91741125); 国家科技重大专项(2017-Ⅰ-0004-0005)
详细信息
    作者简介:

    王方(1973-),女,副教授、硕士生导师,博士,主要从事两相湍流流动及燃烧的研究

  • 中图分类号: V231.2

Different reaction mechanism on simulations of jet flames using flamelet model

  • 摘要:

    用一维火焰分析并构建火焰面数据库,基于稳态层流火焰面(SLFM)模型分析不同化学反应机理对火焰面数据库及模拟结果的影响。基于大涡模拟(LES)程序AECSC(aero engine combustor simulation code)软件,SLFM模型结合DRG(direct relation graph)方法简化机理、Smooke机理、GRI 3.0详细机理模拟高雷诺数甲烷射流Flame D、E、F火焰,其中GRI 3.0机理的温度平均值和脉动值与实验数据最接近。相比LES-概率密度函数输运方程湍流燃烧(TPDF)模型,LES-SLFM方法计算速度快,整体精度接近TPDF计算结果。对化学机理影响火焰面数据库,从而影响模拟时间和精度的原因进行了系统分析。LES-SLFM模型结合详细机理速度快、精度合适,未来可以进一步用燃烧室算例检验,具有应用的潜力和发展价值。

     

  • 图 1  一维对撞火焰示意图

    Figure 1.  Sketch of one-dimensional counterflow flame

    图 2  甲烷-空气扩散火焰实验简图[17]

    Figure 2.  Sketch of the methane-air diffusion flame experiment[17]

    图 3  一维流场不同机理计算结果对比

    Figure 3.  Comparison of one-dimensional flow field computation result among different reaction mechanisms

    图 4  各机理标量耗散率与最高温度关系

    Figure 4.  Relationship between scalar dissipation rate and maximum temperature of different mechanisms

    图 5  Sandia Flames 的实验图示[22]

    Figure 5.  Sketch of Sandia Flames experiments[22]

    图 6  网格示意图

    Figure 6.  Sketch of the mesh

    图 7  Flame D瞬态温度对比

    Figure 7.  Comparison of transient temperature distribution of Flame D

    图 8  Flame D各截面平均温度及温度脉动对比

    Figure 8.  Comparisons of mean and RMS temperature profile of Flame D on different sections

    图 9  Flame D各截面主要组分质量分数对比

    Figure 9.  Comparisons of main species’ mass fraction profile of Flame D on different sections

    图 10  Flame E瞬态温度对比

    Figure 10.  Comparison of transient temperature distribution of Flame E

    图 11  Flame E各截面平均温度及温度脉动对比

    Figure 11.  Comparisons of mean and RMS temperature profile of Flame E on different sections

    图 12  Flame F瞬态温度对比

    Figure 12.  Comparison of transient temperature distribution of Flame F

    图 13  Flame F各截面平均温度及温度脉动对比

    Figure 13.  Comparisons of mean and RMS temperature profiles of Flame F on different sections

    图 14  各模型Flame D轴向平均温度对比

    Figure 14.  Comparison of mean temperature profile of Flame D alongside the axis among different models

    图 15  $\,\chi_{{\rm{st}}}=0.15$时各机理温度-混合物分数分布

    Figure 15.  Temperature-mixture fraction profiles of different mechanisms when $\,\chi_{{\rm{st}}}=0.15$

    图 16  $\,\chi_{{\rm{st}}}=150$时各机理温度-混合物分数分布

    Figure 16.  Temperature-mixture fraction profiles of different mechanisms when $\,\chi_{{\rm{st}}}=150$

    图 17  $\,\chi_{{\rm{st}}}=0.15$时纯甲烷-空气边界条件下各机理温度-混合物分数分布

    Figure 17.  Temperature-mixture fraction profiles under pure methane-air boundary condition of different mechanisms when $\,\chi_{{\rm{st}}}=0.15$

    图 18  $\,\chi_{{\rm{st}}}=12$时纯甲烷-空气边界条件下各机理温度-混合物分数分布

    Figure 18.  Temperature-mixture fraction profiles under pure methane-air boundary condition of different mechanisms when $\,\chi_{{\rm{st}}}=12$

    图 19  Flame D与Flame F瞬态标量耗散率分布

    Figure 19.  Transient distribution of scalar dissipation rate in Flame D and Flame F

    图 20  各模型计算相对时间

    Figure 20.  Relative computation time of different models

    图 21  各机理计算一维火焰的相对时间

    Figure 21.  Relative computation time of one-dimensional flame of different mechanisms

    图 22  进口附近瞬时温度分布放大图

    Figure 22.  Zoom photos of transient temperature distribution near inflow

    图 23  Flame F中z/D=15截面平均温度分布

    Figure 23.  Comparison of mean temperature profile of Flame F on z/D=15 section

    表  1  甲烷-空气扩散火焰边界条件

    Table  1.   Boundary condition of methane-air diffusion flame

    入口类型单位面积流量/
    (kg·m−2·s−1
    组分构成
    (体积分数)
    温度/K
    燃料0.5501100% CH4300
    氧化剂0.946779% N2,21% O2300
    下载: 导出CSV

    表  2  火焰面数据库边界条件

    Table  2.   Boundary condition of the flamelet library

    入口类型初始流量/
    (kg·m−2·s−1
    组分构成
    (体积分数)
    温度/K
    燃料0.125% CH4
    59.25%N2 15.75% O2
    291
    氧化剂0.179% N2,21% O2291
    下载: 导出CSV

    表  3  Sandia Flames边界条件

    Table  3.   Boundary condition of Sandia Flames

    入口类型速度/(m/s)混合物分数温度/K
    中心射流49.9 (Flame D)
    74.4 (Flame E)
    99.2 (Flame F)
    1291
    值班入口11.40.2711 888
    空气伴流0.90291
    下载: 导出CSV

    表  4  各模型计算Flame D的平均温度误差

    Table  4.   Mean error of mean temperature of different models simulating Flame D %

    模型z/D=1z/D=3z/D=7.5z/D=30z/D=60总平均误差
    SLFM
    (GRI 3.0)
    9.988.829.6519.127.117.2
    SLFM
    (Smooke)
    10.75.5738.538.914.525.3
    SLFM
    (DRG)
    9.0016.051.039.022.026.2
    TPDF10.06.0010.08.0015.09.80
    下载: 导出CSV
  • [1] POPE S B. The probability approach to the modelling of turbulent reacting flows[J]. Combustion and Flame,1976,27: 299-312. doi: 10.1016/0010-2180(76)90035-3
    [2] PETERS N. Laminar diffusion flamelet models in non-premixed turbulent combustion[J]. Progress in Energy and Combustion Science,1984,10(3): 319-339. doi: 10.1016/0360-1285(84)90114-X
    [3] PETERS N. Laminar flamelet concepts in turbulent combustion[J]. Symposium (International) on Combustion,1988,21(1): 1231-1250. doi: 10.1016/S0082-0784(88)80355-2
    [4] MÖBUS H,GERLINGER P,BRÜGGEMANN D. Scalar and joint scalar-velocity-frequency Monte Carlo PDF simulation of supersonic combustion[J]. Combustion and Flame,2003,132(1/2): 3-24.
    [5] PIERCE C D,MOIN P. Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion[J]. Journal of Fluid Mechanics,2004,504: 73-97. doi: 10.1017/S0022112004008213
    [6] 陆阳. 燃烧计算中火焰面模型的研究[D]. 合肥: 中国科学技术大学, 2009.

    LU Yang. A study on flamelet model in combustion simulation[D]. Hefei: University of Science and Technology of China, 2009. (in Chinese)
    [7] 韩宗英,何昌升,李井华,等. 钝体稳定射流火焰的火焰面模型数值研究[J]. 航空动力学报,2020,35(2): 337-347. doi: 10.13224/j.cnki.jasp.2020.02.013

    HAN Zongying,HE Changsheng,LI Jinghua,et al. Investigation of flamelet modeling for bluff-body stabilized jet flame[J]. Journal of Aerospace Power,2020,35(2): 337-347. (in Chinese) doi: 10.13224/j.cnki.jasp.2020.02.013
    [8] NIKOLAOU Z M,CHRYSOSTOMOU C,VERVISCH L,et al. Progress variable variance and filtered rate modelling using convolutional neural networks and flamelet methods[J]. Flow, Turbulence and Combustion,2019,103(2): 485-501. doi: 10.1007/s10494-019-00028-w
    [9] PRIELER R,DEMUTH M,SPOLJARIC D,et al. Numerical investigation of the steady flamelet approach under different combustion environments[J]. Fuel,2015,140: 731-743. doi: 10.1016/j.fuel.2014.10.006
    [10] 王方,窦力,魏观溢,等. 基于PDF-LES模型的凹腔支板火焰稳定器模拟[J]. 工程热物理学报,2021,42(3): 758-767.

    WANG Fang,DOU Li,WEI Guanyi,et al. The simulation of cavity flameholder by PDF-LES method[J]. Journal of Engineering Thermophysics,2021,42(3): 758-767. (in Chinese)
    [11] 邢竞文,金捷,王方. 基于释热率分析的钝体贫油熄火过程分析[J]. 北京航空航天大学学报,2022,48(3): 473-484. doi: 10.13700/j.bh.1001-5965.2020.0588

    XING Jingwen,JIN Jie,WANG Fang. Lean blowoff process of bluff body based on heat release rate analysis[J]. Journal of Beijing University of Aeronautics and Astronautics,2022,48(3): 473-484. (in Chinese) doi: 10.13700/j.bh.1001-5965.2020.0588
    [12] JONES W P,LYRA S,NAVARRO-MARTINEZ S. Large eddy simulation of a swirl stabilized spray flame[J]. Proceedings of the Combustion Institute,2011,33(2): 2153-2160. doi: 10.1016/j.proci.2010.07.032
    [13] GOODWIN D G, MOFFAT H K, SPETH R L. Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes[EB/OL]. [2022-12-22]. https: //www.cantera.org/
    [14] DI MARE F,JONES W P,MENZIES K R. Large eddy simulation of a model gas turbine combustor[J]. Combustion and Flame,2004,137(3): 278-294. doi: 10.1016/j.combustflame.2004.01.008
    [15] BILGER R W,STÅRNER S H,KEE R J. On reduced mechanisms for methane-air combustion in nonpremixed flames[J]. Combustion and Flame,1990,80(2): 135-149. doi: 10.1016/0010-2180(90)90122-8
    [16] BRANLEY N,JONES W P. Large eddy simulation of a turbulent non-premixed flame[J]. Combustion and flame,2001,127(1/2): 1914-1934.
    [17] SMOOKE M D,PURI I K,SESHADRI K. A comparison between numerical calculations and experimental measurements of the structure of a counterflow diffusion flame burning diluted methane in diluted air[J]. Symposium (International) on Combustion,1988,21(1): 1783-1792. doi: 10.1016/S0082-0784(88)80412-0
    [18] SMITH G P, GOLDEN D M, FRENKLACH M, et al. GRI-MECH 3.0[EB/OL]. [2021-12-22]http: //www.me.berkeley.edu/gri_mech/
    [19] SMOOKE S D. Reduced kinetic mechanisms and asymptotic approximations for methane-air flames: a topical volume[M]. Berlin: Springer-Verlag, 1991.
    [20] ZHOU C W,LI Y,BURKE U,et al. An experimental and chemical kinetic modeling study of 1, 3-butadiene combustion: ignition delay time and laminar flame speed measurements[J]. Combustion and Flame,2018,197: 423-438. doi: 10.1016/j.combustflame.2018.08.006
    [21] XUE J,XI S,WANG F. An extensive study on skeletal mechanism reduction for the oxidation of C0–C4 fuels[J]. Combustion and Flame,2020,214: 184-198. doi: 10.1016/j.combustflame.2019.12.035
    [22] BARLOW R S,FRANK J H. Effects of turbulence on species mass fractions in methane/air jet flames[J]. Symposium (International) on Combustion,1998,27(1): 1087-1095. doi: 10.1016/S0082-0784(98)80510-9
    [23] SUNG C J,LAW C K,CHEN J Y. Augmented reduced mechanisms for NO emission in methane oxidation[J]. Combustion and Flame,2001,125(1/2): 906-919.
    [24] JONES W P,PRASAD V N. Large eddy simulation of the sandia flame series (D–F) using the Eulerian stochastic field method[J]. Combustion and Flame,2010,157(9): 1621-1636. doi: 10.1016/j.combustflame.2010.05.010
  • 加载中
图(24) / 表(4)
计量
  • 文章访问数:  122
  • HTML浏览量:  83
  • PDF量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-12
  • 网络出版日期:  2022-10-14

目录

    /

    返回文章
    返回