Dynamic characteristics of fully-partitioned pocket damper seal working with high parameters
-
摘要:
采用计算流体力学方法建立贯通式袋型阻尼密封(FPDS)三维数值计算模型,基于多频椭圆涡动轨迹的密封动力特性求解方法研究了高进口压力、转速及预旋比对FPDS动力特性的影响。结果表明:保持进口压力为7 MPa不变,随压比的增加,有效阻尼增加,穿越频率逐渐减小;压比为7时,有效阻尼随进口压力增加而急剧增大,进口压力为7 MPa时有效阻尼约为进口压力为0.69 MPa的10.26倍,系统稳定性增强显著。当转子转速为25 000 r/min时,较转速为5 000 r/min,穿越频率可增加约62.2 Hz,有效阻尼约降低28.5%,交叉刚度增长约6.94倍,高转速严重影响系统稳定,但转速增大有利于在腔室内形成旋涡,降低密封泄漏。当预旋比为0时,系统最稳定,当增加到预旋比为0.8,交叉刚度约增长4.84倍,穿越频率约增加24.9 Hz,有效阻尼下降,导致系统稳定性降低。
Abstract:The three-dimensional numerical model of fully-partitioned pocket damper seal (FPDS)was estab-lished by computational fluid dynamics method. The effects of high inlet pressure, rotational speed and preswirl ratio on the dynamic characteristics of FPDS were studied based on multiple-frequencies elliptic whirling orbits. Results showed that keeping the inlet pressure 7 MPa, the effective damping increased and the crossover frequency decreased with the increasing pressure ratio. For pressure ratio 7, the effective damping increased sharply with the increasing inlet pressure. For inlet pressure 7 MPa, the effective damping was about 10.26 times that of inlet pressure 0.69 MPa, and the system stability was enhanced. Compared with the rotor rotational speed 5 000 r/min, the crossover frequency increased by about 62.2 Hz for rotor rotational speed 25 000 r/min, the effective damping decreased by about 28.5%, and the cross-coupled stiffness increased by about 6.94 times. However, the increase of rotational speed caused vortex in the cavity, which was conducive to reducing the leakage flowrate. The system stability performed best for the preswirl ratio 0. When preswirl ratio increased to 0.8, the cross-coupled stiffness increased by about 4.84 times, and the crossover frequency increased by 24.9 Hz. The effective damping decreased, resulting in the decrease of system stability.
-
表 1 FPDS几何尺寸
Table 1. Dimensions of the FPDS
参数 数值 密封长度L/mm 100.33 转子直径D/mm 170 密封间隙δ/mm 0.3 挡板厚度t1/mm 3.175 齿数N1 8 齿厚t2/mm 3.175 挡板数N2 8 主腔室长度l1/mm 13.97 副腔室长度l2/mm 6.35 腔室深度h/mm 3.175 表 2 计算工况参数
Table 2. Calculation condition parameters
计算工况 参数设置 工质 空气 (理想气体) 湍流模型 k-ε 壁面属性 绝热, 光滑 入口温度T/K 287 时间步长/s 0.0001 涡动频率 f /Hz 20, 40, … , 260, 280 进口压力 pin/MPa 0.69, 7 出口压力 pout/M Pa 0.1, 0.241 5,0.345, 1.05, 2.45, 3.5 压比 π 7, 3, 2 进口预旋比λ 0, 0.3, 0.4, 0.7, 0.8 转速 n/103 (r/min) 5, 10, 15, 20, 25 涡动轨迹 椭圆 -
[1] 司和勇,曹丽华,李盼. 密封结构对汽轮机转子动力特性的影响分析[J]. 中国电机工程学报,2018,40(1): 165-175. doi: 10.13334/j.0258-8013.pcsee.182234SI Heyong,CAO Lihua,LI Pan. Effect of seal structure on rotor dynamic characteristics of steam turbine[J]. Proceedings of the CSEE,2018,40(1): 165-175. (in Chinese) doi: 10.13334/j.0258-8013.pcsee.182234 [2] DENTON J D. Loss mechanisms in turbomachinery[J]. Journal of Turbomachinery,1993,115(4): 621-656. doi: 10.1115/1.2929299 [3] CHUPP R E,HENDRICKS R C,LATTIME S B,et al. Sealing in turbomachinery[J]. Journal of Propulsion and Power,2006,22(2): 313-349. doi: 10.2514/1.17778 [4] CHILDS D,ELROD D,HALE K. Annular honeycomb seals: test results for leakage and rotordynamic coefficients[J]. Journal of Tribology,1989,111(2): 293-300. doi: 10.1115/1.3261911 [5] 黄瓯,阳虹,彭泽瑛. 我国超超临界汽轮机的发展方向[J]. 热力透平,2004,33(1): 1-7, 45. doi: 10.3969/j.issn.1672-5549.2004.01.001HUANG Ou,YANG Hong,PENG Zeying. Development orientation for domestic ultra-supercritical steam turbine[J]. Thermal Turbine,2004,33(1): 1-7, 45. (in Chinese) doi: 10.3969/j.issn.1672-5549.2004.01.001 [6] 杨文虎. 1 350 MW超超临界汽轮机技术特点及分析[J]. 中国电力,2020,53(1): 162-168.YANG Wenhu. Technical characteristics and analysis of 1 350 MW ultra supercritical steam turbine[J]. Electric Power,2020,53(1): 162-168. (in Chinese) [7] 沈翀. 大型汽轮机汽流激振问题的分析及处理 [D]. 北京: 华北电力大学, 2007.SHEN Chong. Big capacity turbine steam flow excited vibration problem analysis and solving menthod[D]. Beijing: North China Electric Power University, 2007. (in Chinese) [8] VANCE J M, SHULTZ R R. A new damper seal for turbomachinery[C]//Proceedings of 14th Vibration and Noise Conference. Albuquerque, New Mexico, USA: Vibration of Rotating Systems, 1993: 139-148. [9] VANCE J M,LI J. Test results of a new damper seal for vibration reduction in turbomachinery[J]. Journal of Engineering for Gas Turbines and Power,1996,118(4): 843-846. doi: 10.1115/1.2817004 [10] SHULTZ R M. Analytical and experimental investigations of a labyrinth seal test rig and damper seals for turbomachinery[D]. College Station, Texas, USA: Texas A&M University, 1996. [11] LI J, KUSHNER F, DE CHOUDHURY P. Experimental evaluation of slotted pocket gas damper seals on a rotating test rig[C]//ASME Turbo Expo 2002: Power for Land, Sea, and Air. Amsterdam, The Netherlands: ASME, 2002: 1125-1138. [12] ERTAS B H,VANCE J M. Rotordynamic force coefficients for a new damper seal design[J]. Journal of Tribology,2007,129(2): 365-374. doi: 10.1115/1.2464138 [13] GAMAL A M,ERTAS B H,VANCE J M. High-pressure pocket damper seals: leakage rates and cavity pressures[J]. Journal of Turbomachinery,2007,129(4): 826-834. doi: 10.1115/1.2720871 [14] GAMAL A M. Leakage and rotordynamic effects of pocket damper seals and see-through labyrinth seals[D]. College Station Texas: Texas A&M University, 2007. [15] ERTAS B H,DELGADO A,VANNINI G. Rotordynamic force coefficients for three types of annular gas seals with inlet preswirl and high differential pressure ratio[J]. Journal of Engineering for Gas Turbines and Power,2012,134(4): 42503-42514. doi: 10.1115/1.4004537 [16] LI Zhigang,LI Jun,FENG Zhenping. Numerical investigations on the leakage and rotordynamic characteristics of pocket damper seals: Part Ⅰ effects of pressure ratio, rotational speed, and inlet preswirl[J]. Journal of Engineering for Gas Turbines and Power,2015,137(3): 32503-32518. doi: 10.1115/1.4028373 [17] 孙丹,李胜远,艾延廷,等. 袋型阻尼密封动力特性分析及对转子稳定性的影响[J]. 中国电机工程学报,2018,38(12): 3621-3627. doi: 10.13334/J.0258-8013.PCSEE.171049SUN Dan,LI Shengyuan,AI Yanting,et al. Analysis of the rotordynamic characteristics of pocket damper seals and impact on rotor stability[J]. Proceedings of the CSEE,2018,38(12): 3621-3627. (in Chinese) doi: 10.13334/J.0258-8013.PCSEE.171049 [18] GRIEBEL C. Impact analysis of pocket damper seal geometry variations on leakage performance and rotordynamic force coefficients using computational fluid dynamics[J]. Journal of Engineering for Gas Turbines and Power,2019,141(4): 41024-41033. doi: 10.1115/1.4040749 [19] 张万福,马凯,潘勃,等. 基于变厚度挡板的新型渐扩/渐缩袋型阻尼密封动力特性研究[J]. 热能动力工程,2020,35(5): 24-33. doi: 10.16146/j.cnki.rndlgc.2020.05.004ZHANG Wanfu,MA Kai,PAN bo,et al. Study on dynamic characteristics of pocket damper seals with divergent/convergent cavity[J]. Journal of Engineering for Thermal Energy and Power,2020,35(5): 24-33. (in Chinese) doi: 10.16146/j.cnki.rndlgc.2020.05.004 [20] THIELE J, DELGADO A. Dynamic characterization of fully partitioned damper seals new proposal[EB/OL]. [2022-04-17].https://turbolab.tamu.edu/wp-content/uploads/2017/09/Delgado-proposal-Pocket-damper-seals.pdf. [21] 李军, 李志刚. 袋型阻尼密封泄漏流动和转子动力特性的研究进展[J]. 力学进展, 2011, 41(5): 519-536LI Jun, LI Zhigang. Leakage flow of pocket damper seal at high rotational speed[J]. Advances in Mechanics, 2011, 41(5): 519-536. (in Chinese) -