留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高参数贯通式袋型阻尼密封动力特性

赵琳慧 张万福 周庆辉 张乃丹 李春

赵琳慧, 张万福, 周庆辉, 等. 高参数贯通式袋型阻尼密封动力特性[J]. 航空动力学报, 2024, 39(1):20220213 doi: 10.13224/j.cnki.jasp.20220213
引用本文: 赵琳慧, 张万福, 周庆辉, 等. 高参数贯通式袋型阻尼密封动力特性[J]. 航空动力学报, 2024, 39(1):20220213 doi: 10.13224/j.cnki.jasp.20220213
ZHAO Linhui, ZHANG Wanfu, ZHOU Qinghui, et al. Dynamic characteristics of fully-partitioned pocket damper seal working with high parameters[J]. Journal of Aerospace Power, 2024, 39(1):20220213 doi: 10.13224/j.cnki.jasp.20220213
Citation: ZHAO Linhui, ZHANG Wanfu, ZHOU Qinghui, et al. Dynamic characteristics of fully-partitioned pocket damper seal working with high parameters[J]. Journal of Aerospace Power, 2024, 39(1):20220213 doi: 10.13224/j.cnki.jasp.20220213

高参数贯通式袋型阻尼密封动力特性

doi: 10.13224/j.cnki.jasp.20220213
基金项目: 国家自然科学基金(51875361); 上海市自然科学基金(20ZR1439200)
详细信息
    作者简介:

    赵琳慧(1997-),女,硕士生,主要研究领域为透平机械密封动力学

    通讯作者:

    张万福(1986-),男,教授、博士生导师,博士,主要研究领域为转子动力学与密封动力学。E-mail:wfzhang@usst.edu.cn

  • 中图分类号: V233.5

Dynamic characteristics of fully-partitioned pocket damper seal working with high parameters

  • 摘要:

    采用计算流体力学方法建立贯通式袋型阻尼密封(FPDS)三维数值计算模型,基于多频椭圆涡动轨迹的密封动力特性求解方法研究了高进口压力、转速及预旋比对FPDS动力特性的影响。结果表明:保持进口压力为7 MPa不变,随压比的增加,有效阻尼增加,穿越频率逐渐减小;压比为7时,有效阻尼随进口压力增加而急剧增大,进口压力为7 MPa时有效阻尼约为进口压力为0.69 MPa的10.26倍,系统稳定性增强显著。当转子转速为25 000 r/min时,较转速为5 000 r/min,穿越频率可增加约62.2 Hz,有效阻尼约降低28.5%,交叉刚度增长约6.94倍,高转速严重影响系统稳定,但转速增大有利于在腔室内形成旋涡,降低密封泄漏。当预旋比为0时,系统最稳定,当增加到预旋比为0.8,交叉刚度约增长4.84倍,穿越频率约增加24.9 Hz,有效阻尼下降,导致系统稳定性降低。

     

  • 图 1  转子椭圆涡动轨迹模型

    Figure 1.  Elliptical whirling orbits of the rotor

    图 2  FPDS几何模型

    Figure 2.  Geometry model of the FPDS

    图 3  FPDS网格分布

    Figure 3.  Grid distribution of the FPDS

    图 4  网格无关性验证

    Figure 4.  Grid independent verification

    图 5  数值计算与实验结果对比

    Figure 5.  Comparison of experimental results and CFD results

    图 6  FPDS各腔室动力特性系数随涡动频率的变化

    Figure 6.  Dynamic characteristic coefficient varying with whirling frequency of each cavity in FPDS

    图 7  FPDS沿流动方向流场特性

    Figure 7.  Flow field characteristics of the FPDS

    图 8  不同压比下FPDS动力特性系数随涡动频率变化

    Figure 8.  Dynamic characteristic coefficient varying with whirling frequency at different pressure ratios

    图 9  不同压比下各腔室穿越频率

    Figure 9.  Crossover frequency in each cavity at different pressure ratios

    图 10  不同压比下密封下游速度矢量变化(n=15000 r/min, λ=0)

    Figure 10.  Velocity vector variation of seal downstream at different pressure ratios (n=15000 r/min, λ=0)

    图 11  不同转速FPDS动力特性系数随涡动频率变化

    Figure 11.  Rotordynamic coefficients varying with whirling frequency of FPDS at different rotational speeds

    图 12  不同转速下各腔室穿越频率

    Figure 12.  Crossover frequency of each cavity at different rotational speeds

    图 13  不同转速下腔室内周向速度沿径向高度分布

    Figure 13.  Circumferential velocity distribution along radial height at different rotational speeds

    图 14  不同预旋比下FPDS动力特性系数随涡动频率变化

    Figure 14.  Rotordynamic coefficientsvarying with whirling frequency at different inlet preswirl ratios

    图 15  不同预旋下FPDS穿越频率

    Figure 15.  Crossover frequency of the FPDS atdifferent inlet preswirl ratios

    图 16  不同预旋下各腔室穿越频率

    Figure 16.  Crossover frequency of each cavity atdifferent inlet preswirl ratios

    图 17  不同进口预旋比下沿轴向的周向速度分布

    Figure 17.  Circumferential velocity changes along the axial length at different inlet preswirl ratios

    图 18  不同预旋比下FPDS压力场分布

    Figure 18.  Pressure distribution of FPDS at different inlet preswirl ratios

    表  1  FPDS几何尺寸

    Table  1.   Dimensions of the FPDS

    参数数值
    密封长度L/mm100.33
    转子直径D/mm170
    密封间隙δ/mm0.3
    挡板厚度t1/mm3.175
    齿数N18
    齿厚t2/mm3.175
    挡板数N28
    主腔室长度l1/mm13.97
    副腔室长度l2/mm6.35
    腔室深度h/mm3.175
    下载: 导出CSV

    表  2  计算工况参数

    Table  2.   Calculation condition parameters

    计算工况参数设置
    工质空气 (理想气体)
    湍流模型k-ε
    壁面属性绝热, 光滑
    入口温度T/K287
    时间步长/s0.0001
    涡动频率 f /Hz20, 40, … , 260, 280
    进口压力 pin/MPa0.69, 7
    出口压力 pout/M Pa0.1, 0.241 5,0.345, 1.05, 2.45, 3.5
    压比 π7, 3, 2
    进口预旋比λ0, 0.3, 0.4, 0.7, 0.8
    转速 n/103 (r/min)5, 10, 15, 20, 25
    涡动轨迹椭圆
    下载: 导出CSV
  • [1] 司和勇,曹丽华,李盼. 密封结构对汽轮机转子动力特性的影响分析[J]. 中国电机工程学报,2018,40(1): 165-175. doi: 10.13334/j.0258-8013.pcsee.182234

    SI Heyong,CAO Lihua,LI Pan. Effect of seal structure on rotor dynamic characteristics of steam turbine[J]. Proceedings of the CSEE,2018,40(1): 165-175. (in Chinese) doi: 10.13334/j.0258-8013.pcsee.182234
    [2] DENTON J D. Loss mechanisms in turbomachinery[J]. Journal of Turbomachinery,1993,115(4): 621-656. doi: 10.1115/1.2929299
    [3] CHUPP R E,HENDRICKS R C,LATTIME S B,et al. Sealing in turbomachinery[J]. Journal of Propulsion and Power,2006,22(2): 313-349. doi: 10.2514/1.17778
    [4] CHILDS D,ELROD D,HALE K. Annular honeycomb seals: test results for leakage and rotordynamic coefficients[J]. Journal of Tribology,1989,111(2): 293-300. doi: 10.1115/1.3261911
    [5] 黄瓯,阳虹,彭泽瑛. 我国超超临界汽轮机的发展方向[J]. 热力透平,2004,33(1): 1-7, 45. doi: 10.3969/j.issn.1672-5549.2004.01.001

    HUANG Ou,YANG Hong,PENG Zeying. Development orientation for domestic ultra-supercritical steam turbine[J]. Thermal Turbine,2004,33(1): 1-7, 45. (in Chinese) doi: 10.3969/j.issn.1672-5549.2004.01.001
    [6] 杨文虎. 1 350 MW超超临界汽轮机技术特点及分析[J]. 中国电力,2020,53(1): 162-168.

    YANG Wenhu. Technical characteristics and analysis of 1 350 MW ultra supercritical steam turbine[J]. Electric Power,2020,53(1): 162-168. (in Chinese)
    [7] 沈翀. 大型汽轮机汽流激振问题的分析及处理 [D]. 北京: 华北电力大学, 2007.

    SHEN Chong. Big capacity turbine steam flow excited vibration problem analysis and solving menthod[D]. Beijing: North China Electric Power University, 2007. (in Chinese)
    [8] VANCE J M, SHULTZ R R. A new damper seal for turbomachinery[C]//Proceedings of 14th Vibration and Noise Conference. Albuquerque, New Mexico, USA: Vibration of Rotating Systems, 1993: 139-148.
    [9] VANCE J M,LI J. Test results of a new damper seal for vibration reduction in turbomachinery[J]. Journal of Engineering for Gas Turbines and Power,1996,118(4): 843-846. doi: 10.1115/1.2817004
    [10] SHULTZ R M. Analytical and experimental investigations of a labyrinth seal test rig and damper seals for turbomachinery[D]. College Station, Texas, USA: Texas A&M University, 1996.
    [11] LI J, KUSHNER F, DE CHOUDHURY P. Experimental evaluation of slotted pocket gas damper seals on a rotating test rig[C]//ASME Turbo Expo 2002: Power for Land, Sea, and Air. Amsterdam, The Netherlands: ASME, 2002: 1125-1138.
    [12] ERTAS B H,VANCE J M. Rotordynamic force coefficients for a new damper seal design[J]. Journal of Tribology,2007,129(2): 365-374. doi: 10.1115/1.2464138
    [13] GAMAL A M,ERTAS B H,VANCE J M. High-pressure pocket damper seals: leakage rates and cavity pressures[J]. Journal of Turbomachinery,2007,129(4): 826-834. doi: 10.1115/1.2720871
    [14] GAMAL A M. Leakage and rotordynamic effects of pocket damper seals and see-through labyrinth seals[D]. College Station Texas: Texas A&M University, 2007.
    [15] ERTAS B H,DELGADO A,VANNINI G. Rotordynamic force coefficients for three types of annular gas seals with inlet preswirl and high differential pressure ratio[J]. Journal of Engineering for Gas Turbines and Power,2012,134(4): 42503-42514. doi: 10.1115/1.4004537
    [16] LI Zhigang,LI Jun,FENG Zhenping. Numerical investigations on the leakage and rotordynamic characteristics of pocket damper seals: Part Ⅰ effects of pressure ratio, rotational speed, and inlet preswirl[J]. Journal of Engineering for Gas Turbines and Power,2015,137(3): 32503-32518. doi: 10.1115/1.4028373
    [17] 孙丹,李胜远,艾延廷,等. 袋型阻尼密封动力特性分析及对转子稳定性的影响[J]. 中国电机工程学报,2018,38(12): 3621-3627. doi: 10.13334/J.0258-8013.PCSEE.171049

    SUN Dan,LI Shengyuan,AI Yanting,et al. Analysis of the rotordynamic characteristics of pocket damper seals and impact on rotor stability[J]. Proceedings of the CSEE,2018,38(12): 3621-3627. (in Chinese) doi: 10.13334/J.0258-8013.PCSEE.171049
    [18] GRIEBEL C. Impact analysis of pocket damper seal geometry variations on leakage performance and rotordynamic force coefficients using computational fluid dynamics[J]. Journal of Engineering for Gas Turbines and Power,2019,141(4): 41024-41033. doi: 10.1115/1.4040749
    [19] 张万福,马凯,潘勃,等. 基于变厚度挡板的新型渐扩/渐缩袋型阻尼密封动力特性研究[J]. 热能动力工程,2020,35(5): 24-33. doi: 10.16146/j.cnki.rndlgc.2020.05.004

    ZHANG Wanfu,MA Kai,PAN bo,et al. Study on dynamic characteristics of pocket damper seals with divergent/convergent cavity[J]. Journal of Engineering for Thermal Energy and Power,2020,35(5): 24-33. (in Chinese) doi: 10.16146/j.cnki.rndlgc.2020.05.004
    [20] THIELE J, DELGADO A. Dynamic characterization of fully partitioned damper seals new proposal[EB/OL]. [2022-04-17].https://turbolab.tamu.edu/wp-content/uploads/2017/09/Delgado-proposal-Pocket-damper-seals.pdf.
    [21] 李军, 李志刚. 袋型阻尼密封泄漏流动和转子动力特性的研究进展[J]. 力学进展, 2011, 41(5): 519-536

    LI Jun, LI Zhigang. Leakage flow of pocket damper seal at high rotational speed[J]. Advances in Mechanics, 2011, 41(5): 519-536. (in Chinese)
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  29
  • HTML浏览量:  9
  • PDF量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-15
  • 网络出版日期:  2023-04-07

目录

    /

    返回文章
    返回