留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空发动机主燃烧室动态燃烧研究现状及关键技术分析

王波 惠鑫 李锋 程明 张漫 杨金虎

王波, 惠鑫, 李锋, 等. 航空发动机主燃烧室动态燃烧研究现状及关键技术分析[J]. 航空动力学报, 2022, 37(11):2479-2487 doi: 10.13224/j.cnki.jasp.20220223
引用本文: 王波, 惠鑫, 李锋, 等. 航空发动机主燃烧室动态燃烧研究现状及关键技术分析[J]. 航空动力学报, 2022, 37(11):2479-2487 doi: 10.13224/j.cnki.jasp.20220223
WANG Bo, HUI Xin, LI Feng, et al. Research status and key technology analysis of dynamic combustion in aero-engine main combustor[J]. Journal of Aerospace Power, 2022, 37(11):2479-2487 doi: 10.13224/j.cnki.jasp.20220223
Citation: WANG Bo, HUI Xin, LI Feng, et al. Research status and key technology analysis of dynamic combustion in aero-engine main combustor[J]. Journal of Aerospace Power, 2022, 37(11):2479-2487 doi: 10.13224/j.cnki.jasp.20220223

航空发动机主燃烧室动态燃烧研究现状及关键技术分析

doi: 10.13224/j.cnki.jasp.20220223
基金项目: 国家科技重大专项(J2019-Ⅲ-0002-0045,2017-Ⅲ-0002-0026); 国家自然科学基金(92041001)
详细信息
    作者简介:

    王波(1988-),男,副研究员、硕士生导师,博士,主要从事航空发动机燃烧研究

    通讯作者:

    李锋(1966-),男,教授、博士生导师,博士,主要从事航空发动机燃烧研究。E-mail: lifeng1966@buaa.edu.cn

  • 中图分类号: V231.2

Research status and key technology analysis of dynamic combustion in aero-engine main combustor

  • 摘要:

    阐述了动态燃烧的内涵,从先进军用和民用发动机的需求出发,强调了开展主燃烧室动态燃烧研究、支撑燃烧室精细化设计的重要性。对国内外动态燃烧研究进行了总结,从基础研究、模型燃烧室研究、数值模拟研究及工程应用四方面将国内外情况进行了对比。分析了开展动态燃烧研究的难点,梳理了我国开展动态燃烧研究需攻克的四大关键技术,并阐述了其内涵及可采取的技术路径。基于我国先进军民用发动机需求和国内研究现状,提出了建立数据库、发展设计方法、构建理论体系及培养研究队伍等合理化建议。

     

  • 图 1  军用发动机高温升燃烧室出口温度变化趋势

    Figure 1.  Trend of combustor outlet temperature of military aero-engine

    图 2  脉动压力对燃烧室结构的损坏[3]

    Figure 2.  Structural damage of combustor caused by pressure oscillation [3]

    图 3  CH-PLIF序列揭示火焰褶皱可能引起局部熄灭[4]

    Figure 3.  CH PLIF image sequence highlighting possible extinction due to flame wrinkling [4]

    图 4  旋流火焰的火焰根部与PVC相互作用[14]

    Figure 4.  Swirl flame root interaction with PVC [14]

    图 5  燃烧室中瞬态流动、油雾、火焰分布关系[32]

    Figure 5.  Instantaneous flow, spray and flame distribution in combustor [32]

    图 6  过渡态与稳态计算的出口温度对比[42]

    Figure 6.  Comparison of simulated outlet temperature between transient state and steady state [42]

    图 7  TAPS燃烧室燃烧不稳定性的机制[45]

    Figure 7.  Combustion instability mechanism of TAPS combustor [45]

  • [1] 林宇震,许全宏,刘高恩. 燃气轮机燃烧室[M]. 北京:国防工业出版社,2008.
    [2] 彭云晖,许全宏,张弛,等. 我国大飞机发动机低污染燃烧室发展考虑[C]//大型飞机关键技术高层论坛暨中国航空学会2007 年年会,深圳:中国航空学会,2007:748-754.
    [3] LIEUWEN T C,YANG V. Combustion instabilities in gas turbine engines:operational experience,fundamental mechanisms and modeling[M]. Arlington,US:American Institute of Aeronautics and Astronautics,2012.
    [4] JIANG N,PATTON R A,LEMPERT W R,et al. Development of high-repetition rate CH PLIF imaging in turbulent nonpremixed flames[J]. Proceedings of the Combustion Institute,2011,33(1): 767-774. doi: 10.1016/j.proci.2010.05.080
    [5] GABET K N,PATTON R A,JIANG N,et al. High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system[J]. Applied Physics B, 2012,106(3):569-575.
    [6] HALLS B R,GORD J R,MEYER T R,et al. 20-kHz-rate three-dimensional tomographic imaging of the concentration field in a turbulent jet[J]. Proceedings of the Combustion Institute,2017,36(3): 4611-4618. doi: 10.1016/j.proci.2016.07.007
    [7] CORITON B,STEINBERG A M,FRANK J H,et al. High-speed tomographic PIV and OH PLIF measurements in turbulent reactive flows[J]. Experiments in Fluids,2014,55(6): 1743. doi: 10.1007/s00348-014-1743-3
    [8] MICHAEL J B,VENKATESWARAN P,MILLER J D,et al. 100-kHz thousand-frame burst-mode planar imaging in turbulent flames[J]. Optics Letters,2014,39(4): 739-742. doi: 10.1364/OL.39.000739
    [9] PETERSSON P,OLOFSSON J,BRACKMAN C,et al. Simultaneous PIV/OH-PLIF, Rayleigh thermometry/OH-PLIF and stereo PIV measurements in a low-swirl flame[J]. Applied Optics,2007,46(19): 3928-3936. doi: 10.1364/AO.46.003928
    [10] PETERSSON P,WELLANDER R,OLOFSSON J,et al. Simultaneous high-speed PIV and OH PLIF measurements and modal analysis for investigating flame-flow interaction in a low swirl flame[R].Lisbon:16th International Symposium on Applications of Laser Techniques to Fluid Mechanics,2012.
    [11] TANAHASHI M,MURAKAMI S,CHOI G M,et al. Simultaneous CH–OH PLIF and stereoscopic PIV measurements of turbulent premixed flames[J]. Proceedings of the Combustion Institute,2005,30(1): 1665-1672. doi: 10.1016/j.proci.2004.08.270
    [12] DENNIS C N,SLABAUGH C D,BOXX I G,et al. 5 kHz thermometry in a swirl-stabilized gas turbine model combustor using chirped probe pulse femtosecond CARS.Part 1: temporally resolved swirl-flame thermometry[J]. Combustion and Flame,2016,173: 441-453. doi: 10.1016/j.combustflame.2016.02.033
    [13] SLABAUGH C D,DENNIS C N,BOXX I G,et al. 5 kHz thermometry in a swirl-stabilized gas turbine model combustor using chirped probe pulse femtosecond CARS.Part 2: analysis of swirl flame dynamics[J]. Combustion and Flame,2016,173: 454-467. doi: 10.1016/j.combustflame.2016.02.032
    [14] STÖHR M,BOXX I G,CARTER C D,et al. Dynamics of lean blowout of a swirl-stabilized flame in a gas turbine model combustor[J]. Proceedings of the Combustion Institute,2011,33(2): 2953-2960. doi: 10.1016/j.proci.2010.06.103
    [15] STÖHR M,BOXX I G,CARTER C D,et al. Experimental study of vortex-flame interaction in a gas turbine model combustor[J]. Combustion and Flame,2012,159(8): 2636-2649. doi: 10.1016/j.combustflame.2012.03.020
    [16] STÖHR M,ARNDT C M,MEIER W. Effects of Damköhler number on vortex-flame interaction in a gas turbine model combustor[J]. Proceedings of the Combustion Institute,2013,34(2): 3107-3115. doi: 10.1016/j.proci.2012.06.086
    [17] BOXX I,SLABAUGH C,KUTNE P,et al. 3-kHz PIV/OH-PLIF measurements in a gas turbine combustor at elevated pressure[J]. Proceedings of the Combustion Institute,2015,35(3): 3793-3802. doi: 10.1016/j.proci.2014.06.090
    [18] BOXX I,ARNDT C M,CARTER C D,et al. High-speed laser diagnostics for the study of flame dynamics in a lean premixed gas turbine model combustor[J]. Experiments in Fluids,2012,52(3): 555-567. doi: 10.1007/s00348-010-1022-x
    [19] SLABAUGH C D,BOXX I G,WERNER S,et al.High-speed measurements in partially-premixed swirl flames at elevated temperature and pressure[R].AIAA 2015-0670,2015.
    [20] SADANANDAN R,STÖHR M,MEIER W. Simultaneous OH-PLIF and PIV measurements in a gas turbine model combustor[J]. Applied Physics B,2008,90(3): 609-618.
    [21] SLABAUGH C D,BOXX I,WERNER S,et al. Structure and dynamics of premixed swirl flames at elevated power density[J]. AIAA Journal,2016,54(3): 946-961. doi: 10.2514/1.J054294
    [22] BOXX I,CARTER C D,STÖHR M,et al. Study of the mechanisms for flame stabilization in gas turbine model combustors using kHz laser diagnostics[J]. Experiments in Fluids,2013,54(5): 1532.1-1532.22. doi: 10.1007/s00348-013-1532-4
    [23] GAO Y,YANG X,FU C,et al. 10 kHz simultaneous PIV/PLIF study of the diffusion flame response to periodic acoustic forcing[J]. Applied Optics,2019,58(10): C112-C120. doi: 10.1364/AO.58.00C112
    [24] YANG X,FU C,WANG G,et al. Simultaneous high-speed SO2 PLIF imaging and stereo-PIV measurements in premixed swirling flame at 20 kHz[J]. Applied Optics,2019,58(10): C121-C129. doi: 10.1364/AO.58.00C121
    [25] FU C,YANG X,LI Z,et al. Experimental investigation on an acoustically forced flame with simultaneous high-speed LII and stereo PIV at 20 kHz[J]. Applied Optics,2019,58(10): C104-C111. doi: 10.1364/AO.58.00C104
    [26] WANG S R,LIU X C,WANG G Q,et al. High-repetition rate burst-mode-laser diagnostics of an unconfined lean premixed swirling flame under external acoustic excitation[J]. Applied Optics,2019,58(10): C68-C78. doi: 10.1364/AO.58.000C68
    [27] WANG G,LIU X,XIA X,et al. Dynamics of periodically-excited vortices in swirling flames[J]. Proceedings of the Combustion Institute,2021,38(4): 6183-6191. doi: 10.1016/j.proci.2020.06.308
    [28] XIA X,FU C,YANG Y,et al. Vortex formation and frequency tuning of periodically-excited jet diffusion flames[J]. Proceedings of the Combustion Institute,2021,38(2): 2067-2074. doi: 10.1016/j.proci.2020.08.015
    [29] TAO B,HU Z,FAN W,et al. Novel method for quantitative and real-time measurements on engine combustion at varying pressure based on the wavelength modulation spectroscopy[J]. Optics Express,2017,25(16): A762-A776. doi: 10.1364/OE.25.00A762
    [30] LI B,LI X,ZHANG D,et al. Comprehensive CO detection in flames using femtosecond two-photon laser-induced fluorescence[J]. Optics Express,2017,25(21): 25809-25818. doi: 10.1364/OE.25.025809
    [31] SLABAUGH C D,PRATT A C,LUCHT R P. Simultaneous 5 kHz OH-PLIF/PIV for the study of turbulent combustion at engine conditions[J]. Applied Physics B,2015,118(1): 109-130. doi: 10.1007/s00340-014-5960-5
    [32] CHTEREV I,ROCK N,EK H,et al. Simultaneous imaging of fuel,OH,and three component velocity fields in high pressure,liquid fueled,swirl stabilized flames at 5 kHz[J]. Combustion and Flame,2017,186: 150-165. doi: 10.1016/j.combustflame.2017.07.021
    [33] LI L A,LI X,WANG Z,et al. Experimental investigation of the flow-spray field in a realistic concentric staged high temperature rise combustor[J]. Fuel,2022,318: 123606.1-123606.10. doi: 10.1016/j.fuel.2022.123606
    [34] LIU C,LIU F,MAO Y,et al. Experimental investigation of performance of an air blast atomizer by planar laser sheet imaging technique[J]. Journal of Engineering for Gas Turbines and Power,2014,136(2):021601.1-021601.8.
    [35] LIU C,LIU F,YANG J,et al. Investigations of the effects of spray characteristics on the flame pattern and combustion stability of a swirl-cup combustor[J]. Fuel,2015,139: 529-536. doi: 10.1016/j.fuel.2014.08.072
    [36] WANG B,ZHANG C,LIN Y Z,et al. Influence of main swirler vane angle on the ignition performance of Teless-Ⅱ combustor[J]. Journal of Engineering for Gas Turbines and Power,2017,139(1): 011501.1-011501.8.
    [37] WANG S,YANG V,GEORGE H,et al. Large-eddy simulations of gas-turbine swirl injector flow dynamics[J]. Journal of Fluid Mechanics,2007,583: 99-122. doi: 10.1017/S0022112007006155
    [38] BOUDIER G,GICQUEL L Y M,POINSOT T,et al. Comparison of LES, RANS and experiments in an aeronautical gas turbine combustion chamber[J]. Proceedings of the Combustion Institute,2007,31(2): 3075-3082. doi: 10.1016/j.proci.2006.07.067
    [39] JAMES S,ZHU J,ANAND M. Large eddy simulation as a design tool for gas turbine combustion systems[J]. AIAA Journal,2006,44(4): 674-86. doi: 10.2514/1.15390
    [40] BENOIT L,NICOUD F. Numerical assessment of thermo-acoustic instabilities in gas turbines[J]. International Journal for Numerical Methods in Fluids,2005,47(8/9): 849-855. doi: 10.1002/fld.886
    [41] STAFFELBACH G,GICQUEL L,BOUDIER G,et al. Large eddy simulation of self-excited azimuthal modes in annular combustors[J]. Proceedings of the Combustion Institute,2009,32(2): 2909-2916. doi: 10.1016/j.proci.2008.05.033
    [42] 王慧汝,金捷,刘大响. 过渡态工况下环形燃烧室热态三维数值模拟[J]. 航空动力学报,2010,25(2): 314-319. doi: 10.13224/j.cnki.jasp.2010.02.004

    WANG Huiru,JIN Jie,LIU Daxiang. Numerical simulation of three-dimension combustion in an annular combustor during a transient state[J]. Journal of Aerospace Power,2010,25(2): 314-319. (in Chinese) doi: 10.13224/j.cnki.jasp.2010.02.004
    [43] ELSHAMY O,TAMBE S,CAI J,et al. Structure of liquid jets in subsonic crossflow at elevated ambient pressures[R]. AIAA 2006-1224,2006.
    [44] ELSHAMY O,TAMBE S,CAI J,et al. PIV and LDV measurements for liquid jets in crossflow[R]. AIAA 2007-1338,2007.
    [45] TEMME J E,ALLISON P M,DRISCOLL J F. Combustion instability of a lean premixed prevaporized gas turbine combustor studied using phase-averaged PIV[J]. Combustion and Flame,2014,161(4): 958-970. doi: 10.1016/j.combustflame.2013.09.021
    [46] DHANUKA S K,TEMME J E,DRISCOLL J F,et al. Vortex-shedding and mixing layer effects on periodic flashback in a lean premixed prevaporized gas turbine combustor[J]. Proceedings of the Combustion Institute,2009,32(2): 2901-2908. doi: 10.1016/j.proci.2008.06.155
    [47] DHANUKA S K,TEMME J E,DRISCOLL J. Unsteady aspects of lean premixed prevaporized gas turbine combustors:flame-flame interactions[J]. Journal of Propulsion and Power,2011,27(3): 631-641. doi: 10.2514/1.B34001
    [48] DHANUKA S K,TEMME J E,DRISCOLL J. Lean-limit combustion instabilities of a lean premixed prevaporized gas turbine combustor[J]. Proceedings of the Combustion Institute,2011,33(2): 2961-2966. doi: 10.1016/j.proci.2010.07.011
    [49] FOUST M,THOMSEN D,STICKLES R,et al. Development of the GE aviation low emissions TAPS combustor for next generation aircraft engines[R]. AIAA 2012-0936,2012.
    [50] LEE C M. NASA project develops next generation low-emissions combustor technologies[R]. AIAA 2013-0540,2013.
    [51] READ R W,ROGERSON J W,HOCHGREB S. Flame imaging of gas-turbine relight[J]. AIAA Journal,2010,48(9): 1916-1927. doi: 10.2514/1.J050105
    [52] MOSBACH T,SADANANDAN R,MEIER W,et al. Experimental analysis of altitude relight under realistic conditions using laser and high-speed video techniques[R]. ASME Paper GT2010-22625,2010.
    [53] HAN X,LAERA D,YANG D,et al. Flame interactions in a stratified swirl burner:Flame stabilization,combustion instabilities and beating oscillations[J]. Combustion and Flame,2020,212: 500-509. doi: 10.1016/j.combustflame.2019.11.020
    [54] YANG S,ZHANG C,LIN Y,et al. Experimental investigation of the ignition process in a separated dual-swirl spray flame[J]. Combustion and Flame,2020,219: 161-177. doi: 10.1016/j.combustflame.2020.05.010
    [55] WANG Z,LIN Y,WANG J,et al. Experimental study on NO emission correlation of fuel staged combustion in a LPP combustor at high pressure based on NO-chemiluminescence[J]. Chinese Journal of Aeronautics,2020,33(2): 550-560. doi: 10.1016/j.cja.2019.09.004
    [56] HAN X,LAERA D,MORGANS A S,et al. The effect of stratification ratio on the macrostructure of stratified swirl flames:experimental and numerical study[J]. Journal of Engineering for Gas Turbines and Power,2018,140(12): 121004.1-121004.10.
    [57] QIN H,LIN Y,LI J. Precessing motion in stratified radial swirl flow[J]. Chinese Journal of Aeronautics,2016,29(2): 386-394. doi: 10.1016/j.cja.2016.02.004
    [58] WANG X Y,HAN X,SONG H,et al. Combustion instabilities with different degrees of premixedness in a separated dual-swirl burner[J]. Journal of Engineering for Gas Turbines and Power,2020,142(6): 06101201.1-06101201.10.
    [59] HAN X,LAERA D,MORGANS A S,et al. Inlet temperature driven supercritical bifurcation of combustion instabilities in a lean premixed prevaporized combustor[J]. Experimental Thermal and Fluid Science,2019,109: 109857.1-109857.11. doi: 10.1016/j.expthermflusci.2019.109857
    [60] HAN X,LAERA D,MORGANS A S,et al. Flame macrostructures and thermoacoustic instabilities in stratified swirling flames[J]. Proceedings of the Combustion Institute,2019,37(4): 5377-5384. doi: 10.1016/j.proci.2018.06.147
  • 加载中
图(7)
计量
  • 文章访问数:  238
  • HTML浏览量:  141
  • PDF量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-19
  • 网络出版日期:  2022-09-15

目录

    /

    返回文章
    返回