留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

射流撞壁形成液膜的形态和厚度试验

袁韦韦 黄勇 章宏宙 黎露

袁韦韦, 黄勇, 章宏宙, 等. 射流撞壁形成液膜的形态和厚度试验[J]. 航空动力学报, 2022, 37(11):2524-2533 doi: 10.13224/j.cnki.jasp.20220232
引用本文: 袁韦韦, 黄勇, 章宏宙, 等. 射流撞壁形成液膜的形态和厚度试验[J]. 航空动力学报, 2022, 37(11):2524-2533 doi: 10.13224/j.cnki.jasp.20220232
YUAN Weiwei, HUANG Yong, ZHANG Hongzhou, et al. Experiment on shape and thickness of liquid film formed by impinging jets on solid walls[J]. Journal of Aerospace Power, 2022, 37(11):2524-2533 doi: 10.13224/j.cnki.jasp.20220232
Citation: YUAN Weiwei, HUANG Yong, ZHANG Hongzhou, et al. Experiment on shape and thickness of liquid film formed by impinging jets on solid walls[J]. Journal of Aerospace Power, 2022, 37(11):2524-2533 doi: 10.13224/j.cnki.jasp.20220232

射流撞壁形成液膜的形态和厚度试验

doi: 10.13224/j.cnki.jasp.20220232
详细信息
    作者简介:

    袁韦韦(1992−),男,博士生,主要从事液膜流动及其稳定性研究。E-mail:BY1904059@buaa.edu.cn

    通讯作者:

    黄勇(1964−),男,教授、博士生导师,博士,主要从事燃油雾化及燃烧室点火熄火机理研究。E-mail:yhuang@buaa.edu.cn

  • 中图分类号: V434+.3

Experiment on shape and thickness of liquid film formed by impinging jets on solid walls

  • 摘要:

    为了研究射流撞壁形成液膜的主要特征,采用基于紫外线发光二极管灯-诱导荧光法(UVLED-induced fluorescence,LEDIF)和高速相机的测试方法对液膜形状和厚度进行了实验研究。结果表明,曲面和平面液膜长度和宽度均随射流速度增加而增加。随着气流速度增加,平面和曲面液膜均长度增加,宽度都减小。随着壁面曲率半径的增加,液膜宽度稍有增加,而液膜长度增加较为明显。随着射流速度的增加,平面和曲面液膜厚度整体上都逐渐减小。而当射流速度进一步增加时,转捩现象开始出现,此时液膜厚度均会迅速增加。曲面液膜的转捩临界速度为19.10~25.08 m/s,而平面液膜转捩速度约为25.08~35.92 m/s。随着气流速度的增加,平面液膜厚度逐渐减小,而曲面液膜厚度在x=0~55 mm时随气流速度增加而增加,在x>55 mm时随气流速度增加而减小。对不同的曲率半径,液膜厚度沿Ψ1圆周方向呈“W”形,而随着曲率半径的增加,“W”逐渐变得扁平,但是位于中间( Ψ1=0°)的厚度基本不变。

     

  • 图 1  试验装置示意图

    Figure 1.  Schematic diagram of the experimental device

    图 2  试验测试方法原理示意图

    Figure 2.  Schematic diagram of the principle of the test method

    图 3  光强-厚度标定示意图

    Figure 3.  Schematic diagram of light intensity- thickness calibration

    图 4  测试方法处理流程

    Figure 4.  Process of the measurement method

    图 5  典型斜射流撞壁液膜图像

    Figure 5.  Typical image of the liquid film formed by oblique jets impinging on a wall

    图 6  射流速度对平面液膜形态的影响

    Figure 6.  Effect of the jet velocity on the shape of the flat wall liquid film

    图 7  射流速度对曲面液膜形态的影响(R=30 mm)

    Figure 7.  Effect of the jet velocity on the shape of the curved wall liquid film (R=30 mm)

    图 8  横向气流速度对平面液膜形态的影响(U0=13.2 m/s)

    Figure 8.  Effect of the airflow velocity on the shape of the flat wall liquid film (U0=13.2 m/s)

    图 9  横向气流速度对曲面液膜形态的影响(U0=13.2 m/s,R=30 mm)

    Figure 9.  Effect of the airflow velocity on the shape of the curved wall liquid film (U0=13.2 m/s, R=30 mm)

    图 10  曲率半径对曲面液膜形态的影响 (U0=13.2 m/s)

    Figure 10.  Effect of the radius of curvature on the shape of the curved wall liquid film ( U0=13.2 m/s)

    图 11  射流速度对平面液膜厚度的影响(α=30°)

    Figure 11.  Effect of the jet velocity on the thickness of the flat wall liquid film (α=30°)

    图 12  射流速度对曲面液膜厚度的影响(R=30 mm)

    Figure 12.  Effect of the jet velocity on the thickness of the curved wall liquid film (R=30 mm)

    图 13  气流速度对平面液膜厚度的影响

    Figure 13.  Effect of the airflow velocity on the thickness of the flat wall liquid film

    图 14  气流速度对曲面液膜厚度的影响(R=30 mm)

    Figure 14.  Effect of the airflow velocity on the thickness of the curved wall liquid film (R=30 mm)

    图 15  曲率半径对曲面液膜厚度的影响(U0=13.2 m/s)

    Figure 15.  Effect of the radius of curvature on the thickness of the curved wall liquid film (U0=13.2 m/s)

    表  1  试验参数及工况表

    Table  1.   Experimental parameters and test conditions

    序号Uair/(m/s)U0/(m/s)R/mm
    109.630, ∞
    2013.230, ∞
    3019.130, ∞
    4025.0830, ∞
    5035.9230, ∞
    61013.230, ∞
    72013.230, ∞
    83013.230, ∞
    94013.230, ∞
    105013.230, ∞
    11013.220
    12013.240
    下载: 导出CSV
  • [1] MITRA S K,LI X,RENKSIZBULUT M. On the breakup of viscous liquid sheets by dual-mode linear analysis[J]. Journal of Propulsion and Power,2001,17(3): 728-735.
    [2] WANG Ruixiang,HUANG Yong,FENG Xiang,et al. Semi-empirical model for the engine liquid fuel sheet formed by the oblique jet impinging onto a plate[J]. Fuel,2018,233: 84-93. doi: 10.1016/j.fuel.2018.06.028
    [3] SI Z,SHIMASAKI N,NISHIDA K,et al. Experimental study on impingement spray and near-field spray characteristics under high-pressure cross-flow conditions[J]. Fuel,2018,218: 12-22. doi: 10.1016/j.fuel.2018.01.011
    [4] PETRUCHIK A I,SOLODUKHIN A D,FISENKO S P. Simulation of cooling of water droplet and film flows in large natural wet cooling towers[J]. Journal of Engineering Physics and Thermophysics,2001,74(1): 62-68. doi: 10.1023/A:1016673803772
    [5] 王慧洁,许坤梅. 液体火箭发动机燃烧室壁液膜冷却的数值模拟[J]. 航空动力学报,2018,33(11): 2660-2668. doi: 10.13224/j.cnki.jasp.2018.11.012

    WANG Huijie,XU Kunmei. Numerical simulation of liquid film cooling for combustion chamber wall of liquid rocket engine[J]. Journal of Aerospace Power,2018,33(11): 2660-2668. (in Chinese) doi: 10.13224/j.cnki.jasp.2018.11.012
    [6] KUCERA J T,RUBIN L M,UWAI K,et al. Fabrication of nanometer smooth Bi2Sr2CaCu2O8+δ films by reac-tive cosputtering from elemental targets with pure ozone[J]. Physica C Superconductivity,1992,192(1/2): 23-30.
    [7] INOUE C, WATANABE T, HIMENO T. Study on atomization process of liquid sheet formed by impinging jets[R]. AIAA-2008-4847, 2008.
    [8] GRADECK M,KOUACHI A,LEBOUCHE M,et al. Boiling curves in relation to quenching of a high temperature moving surface with liquid jet impingement[J]. International Journal of Heat and Mass Transfer,2009,52(5/6): 1094-1104.
    [9] GUHA A,BARRON R M,BALACHANDAR R. An experimental and numerical study of water jet cleaning process[J]. Journal of Materials Processing Technology,2011,211(4): 610-618. doi: 10.1016/j.jmatprotec.2010.11.017
    [10] FRASER N. A photographic investigation into the disintegration of liquid sheets[J]. Philosophical Transactions of the Royal Society of London,1954,247(924): 101-130. doi: 10.1098/rsta.1954.0014
    [11] 林庆国,杨成虎,刘犇. 射流角度和壁面曲率对撞壁液膜的影响[J]. 国防科技大学学报,2013,35(2): 17-21.

    LIN Qingguo,YANG Chenghu,LIU Ben. Effect of impingement angle and wall curvature on liquid film[J]. Journal of National University of Defense Technology,2013,35(2): 17-21. (in Chinese)
    [12] 唐亮,胡锦华,刘计武,等. 倾斜射流撞壁实验研究及液膜几何参数建模[J]. 航空学报,2020,41(12): 1-10.

    TANG Liang,HU Jinhua,LIU Jiwu,et al. Experimental study on oblique jet wall impingement and geometrical parameter modeling of liquid film[J]. Acta Aeronautica et Astronautica Sinica,2020,41(12): 1-10. (in Chinese)
    [13] 唐亮,李平,周立新,等. 倾斜射流撞壁形成的液膜外形的理论建模[J]. 推进技术,2021,42(2): 327-334. doi: 10.13675/j.cnki.tjjs.190766

    TANG Liang,LI Ping,ZHOU Lixin,et al. Theoretical modeling of liquid sheet shape formed by oblique jet impinging onto wall[J]. Journal of Propulsion Technology,2021,42(2): 327-334. (in Chinese) doi: 10.13675/j.cnki.tjjs.190766
    [14] GOOD R, NOLLET B. Fluid film distribution investigation for liquid film cooling application[C]// 53rd AIAA/SAE/ASEE Joint Propulsion Conference.Atlanta,US: AIAA, 2017: 1-6.
    [15] WILSON D I,LE B L,DAO H,et al. Surface flow and drainage films created by horizontal impinging liquid jets[J]. Chemical Engineering Science,2012,68(1): 449-460. doi: 10.1016/j.ces.2011.10.003
    [16] WANG T,FARIA D,STEVENS L J,et al. Flow patterns and draining films created by horizontal and inclined co-herent water jets impinging on vertical walls[J]. Chemical Engineering Science,2013,102(1): 585-601.
    [17] KATE R P,DAS P K,CHAKRABORTY S. Hydraulic jumps due to oblique impingement of circular liquid jets on a flat horizontal surface[J]. Journal of Fluid Mechanics,2007,573: 247-263. doi: 10.1017/S0022112006003818
    [18] TAYLOR G. Formation of thin flat sheets of water[J]. Proceedings of the Royal Society A,1960,259(1296): 1-17.
    [19] RANZ W E. Some experiments on the dynamics of liquid films[J]. Journal of Applied Physics,1959,30(12): 1950-1955. doi: 10.1063/1.1735095
    [20] WATSON E J. The radial spread of a liquid jet over a horizontal plane[J]. Journal of Fluid Mechanics,2006,20(3): 481-499.
    [21] CHOO Y J,KANG B S. Parametric study on impinging-jet liquid sheet thickness distribution using an interfero-metric method[J]. Experiments in Fluids,2001,31(1): 56-62. doi: 10.1007/s003480000258
    [22] INAMURA T,YANAOKA H,TOMODA T. Prediction of mean droplet size of sprays issued from wall impingement injector[J]. AIAA Journal,2004,38(3): 614-621.
    [23] INAMURA T,AMAGASAKI S,YANAOKA H. Thickness of liquid film formed by impinging jets on a concave wall[J]. Journal of Propulsion and Power,2007,23(3): 612-617. doi: 10.2514/1.27691
    [24] GOREN S L. The instability of an annular thread of fluid[J]. Journal of Fluid Mechanics,1962,12(2): 309-319. doi: 10.1017/S002211206200021X
    [25] 何昌升,刘云鹏,韩宗英,等. 平板式预膜喷嘴初次雾化特性试验[J]. 航空动力学报,2020,35(3): 482-492.

    HE Changsheng,LIU Yunpeng,HAN Zongying,et al. Experiment on primary atomization characteristics of planar prefilming nozzle[J]. Journal of Aerospace Power,2020,35(3): 482-492. (in Chinese)
    [26] AZUMA T,HOSHINO T. The radial flow of a thin liquid film: 2nd report, liquid film thickness[J]. Bulletin of JSME,1984,27(234): 2763-2770. doi: 10.1299/jsme1958.27.2763
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  72
  • HTML浏览量:  25
  • PDF量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-22
  • 网络出版日期:  2022-09-09

目录

    /

    返回文章
    返回